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ABSTRACT. The asymptotic behavior of several goodness-of-fit

statistics for copula families is obtained under contiguous alterna-

tives. Many comparisons between a Cramér–von Mises functional of

the empirical copula process and new moment-based goodness-of-fit

statistics are made by considering their associated asymptotic local

power curves. It is shown that the choice of the estimator for the

unknown parameter can have a significant influence on the power

of the Cramér–von Mises test, and that some of the moment-based

statistics can provide simple and efficient goodness-of-fit methods.

The paper ends with an extensive simulation study that aims to

extend the conclusions to small and moderate sample sizes.
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1. Introduction

Copula functions contain all the information about the dependence structure of a random
vector. Indeed, due to the representation theorem of Sklar (1959), every bivariate distri-
bution function H can be written as H(x, y) = C {F (x), G(y)}, where F and G are the
marginal distributions and C : [0, 1]2 → [0, 1] is the copula. It turns out that C, which is
unique when F and G are continuous, is a distribution function with uniform marginals on
[0, 1]. This representation enables practitioners to model the marginal behaviors and the
dependence structure in separate steps. While the adjustment of univariate distributions
is well documented, the study of goodness-of-fit tests for copulas emerged only recently as
a challenging inferential problem.

Let C be the underlying copula of a bivariate population with continuous marginals
and suppose one wants to test the goodness-of-fit hypotheses H0 : C ∈ F = {Cθ; θ ∈ M}



and H1 : C /∈ F = {Cθ; θ ∈ M}, where M is the parameter space. Test statistics that
help discriminate between H0 and H1 have been proposed by Fermanian (2005), Genest et
al. (2006a), Scaillet (2006) and Chen & Fan (2005), among others. A bayesian selection
procedure has also been investigated by Huard et al. (2006). In most cases, the efficiency
of these methods, i.e. the power, is approximated by simulating repeatedly from a fixed
alternative copula D /∈ F . This is done, in particular, in the works of Genest et al. (2008)
and Berg (2007), where many simulation results and recommendations are provided.

One of the most desirable property of a statistical procedure is its ability to detect
small departures from the null hypothesis. In the context of testing the fit to a particular
copula family, such perturbations from H0 are given by the sequence of distributions

Qδn(x, y) = (1 − δn)C(x, y) + δnD(x, y), (1)

where δn = n−1/2δ, δ > 0 and C, D are bivariate copulas such that C ∈ F . This mixture
distribution is a copula for all 0 < δ ≤ n1/2. It is supposed throughout the paper that
Qδn belongs to F only at the limit when n → ∞. Moreover, in order to ensure that
the departure from H0 increases as δ becomes larger (at least for large values of n), it
is assumed that the copula D stochastically dominates C, i.e. D(x, y) ≥ C(x, y) for all
(x, y) ∈ [0, 1]2. The skill of a goodness-of-fit test to reject H0 under (1) can easily be
motivated from applications in finance, where it is often advisable to detect changes in
the dependence pattern over time, e.g. regime shifts for commodity markets.

In this paper, the asymptotic non-degenerate distribution of some goodness-of-fit
statistics is investigated under the sequence (Qδn)n≥1 of alternatives. The focus is put
on a Cramér–von Mises type statistic computed from a version of the empirical copula
process and on simple but efficient moment-based test statistics. The characterization
of their limiting behavior enables to compute asymptotic local power curves from which
comparisons between the goodness-of-fit statistics under investigation can be made.

In Section 2, the goodness-of-fit test statistics studied in this work are defined. In
Section 3, their asymptotic distribution under alternatives of the form (1) are obtained.
These results enable to compute, in Section 4, the local power curves of the statistics under
study and hence to compare the latter under chosen scenarios of local distributions. In
Section 5, a new measure of asymptotic relative efficiency generalizing that of Pitman is
described and computed for many cases. This index is particularly useful for the Cramér–
von Mises goodness-of-fit statistic whose local power curve has no explicit expression.
An extensive simulation study that aim to investigate the local behavior of the testing
procedures in small and moderate sample sizes and compare with the asymptotic results
follows in Section 6. The paper ends with a discussion about ideas of future investigations.

2. Some goodness-of-fit statistics for copula families

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate population with continuous
marginal distributions F , G and whose underlying copula is C. In Subsections 2.1, 2.2
and 2.3, statistical procedures to determine if C belongs or not to a parametric family
F = {Cθ; θ ∈ M} are described. It is assumed throughout that M is a subset of the
real line, so that θ can be estimated by an empirical version of a moment of Cθ. Since all
statistics considered in this work are invariant under strictly increasing transformations of
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the variables, one can consider, for simplicity and without any loss of generality, that the
marginal distributions are uniform on the interval [0, 1].

2.1. The empirical copula goodness-of-fit process

A consistent estimation of a copula is possible via the empirical copula, which Deheuvels
(1979) described as the distribution function of the sample of normalized ranks, i.e.
(R̃1,n, S̃1,n), . . ., (R̃n,n, S̃n,n), where R̃i,n = Fn(Xi) and S̃i,n = Gn(Yi), with

Fn(x) =
1

n

n
∑

i=1

1 (Xi ≤ x) and Gn(y) =
1

n

n
∑

i=1

1 (Yi ≤ y)

being the empirical marginal distributions. Explicitly, C is estimated by

Cn(x, y) =
1

n

n
∑

i=1

1
(

R̃i,n ≤ x, S̃i,n ≤ y
)

. (2)

The weak consistency of the empirical process Cn,θ =
√
n(Cn − Cθ) to a centered gaus-

sian limit was obtained by Deheuvels (1979) under the hypothesis of independence, i.e.
in the special case when Cθ(x, y) = xy. This result was extended under general dis-
tributions by Gänssler & Stute (1987), Fermanian et al. (2004) and Tsukahara (2005).
A suggestion made by Fermanian (2005) and exploited by Quessy (2005) and Genest et
al. (2008) consists in basing a goodness-of-fit test on a modified version of Cn,θ, namely

Cn =
√
n(Cn −Cθ̂n

), where θ̂n consistently estimates θ. As shown by Quessy (2005), Cn is
weakly consistent under H0 if the following assumptions are satisfied.

A1. For all θ ∈ M, the first order partial derivatives of Cθ exist and are continuous;

A2. (Cn,θ,Θn) converges jointly to a gaussian process (Cθ,Θ), where Θn =
√
n(θ̂n − θ).

Moreover, for all θ ∈ M and as ε ↓ 0,

sup
‖θ⋆−θ‖<ε

sup
(x,y)∈[0,1]2

∣

∣

∣
Ċθ⋆(x, y) − Ċθ(x, y)

∣

∣

∣
−→ 0,

where Ċθ = ∂Cθ/∂θ.

Under A1 and A2, the empirical goodness-of-fit process Cn converges weakly to a centered
limit C = Cθ − ΘĊθ having covariance function ΓC(u, v, u

′, v′) = cov{C(u, v), C(u′, v′)}
whose expression is explicit but cumbersome. Thanks to this asymptotic result, it is then
justified to base a goodness-of-fit test on some continuous functional computed from Cn

in virtue of the continuous mapping theorem (see Billingsley, 1968). An omnibus statistic
which has good power properties in general is the Cramer–von Mises distance function

Vn =

∫ 1

0

∫ 1

0
{Cn(x, y)}2 dxdy. (3)

Note that the use of other functional distances are possible, e.g. the Kolmogorov–Smirnov
type statistics, but the latter have been found by Genest et al. (2006a) and by Genest
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et al. (2008) to be generally less powerful than the Cramér–von Mises statistic. Since
statistic (3) has no explicit form in general, Genest & Rémillard (2008) proposed to rely
on the parametric bootstrap version

Vn,N =

∫ 1

0

∫ 1

0
{Cn,N(x, y)}2 dxdy,

where Cn,N =
√
n(Cn − CN ) and CN is the empirical copula computed via equation (2)

from an artificial sample (X⋆
1,n, Y

⋆
1,n), . . . , (X⋆

N,n, Y
⋆
N,n) from Cθ̂n

. These authors show that
as n,N → ∞, the process Cn,N converges to the same limit as Cn and consequently, Vn,N

has the same asymptotic distribution as Vn.

2.2. Moment-based goodness-of-fit statistics

Consider two real valued moments m1 and m2 of Cθ that are related to θ by one-to-
one functions r1, r2 defined on M such that m1 = r1(θ) and m2 = r2(θ). Under
the null hypothesis that the unknown copula of a population belongs to F , one has
r−1
1 (m1) = r−1

2 (m2). If m̂1,n and m̂2,n are consistent for m1 and m2 respectively, then

θ̂1,n = r−1
1 (m̂1,n) and θ̂2,n = r−1

2 (m̂2,n) provide consistent estimations of θ. In most cases

of interest,
√
n(θ̂j,n − θ) is asymptotically normal with mean zero and variance σ2

j (Cθ)
under H0. A simple, asymptotically normal goodness-of-fit statistic is then given by

Sn =
√
n

{

r−1
1 (m̂1,n) − r−1

2 (m̂2,n)
}

. (4)

A goodness-of-fit test then consists in rejecting the null hypothesis whenever |Sn|/σ(Cθ)
exceeds zα/2, i.e. the (1 − α/2)-th percentile of a N (0, 1) distribution, where σ2(Cθ) =
limn→∞ var(Sn). Note that tests based on Sn may be inconsistent since it may happen
that r−1

1 (m1) = r−1
2 (m2) even if H0 is false.

The above method can be employed by considering two of the most popular measures
of association, namely Spearman’s rho and Kendall’s tau. The latter are respectively
defined, in terms of the underlying copula Cθ of the population, by

ρCθ
(θ) = 12

∫ 1

0

∫ 1

0
Cθ(x, y)dxdy− 3 and τCθ

(θ) = 4

∫ 1

0

∫ 1

0
Cθ(x, y)dCθ(x, y)− 1. (5)

Consistent estimators based on inversions of these rank statistics are θ̂n,ρ = ρ−1
Cθ

(ρn) and

θ̂n,τ = τ−1
Cθ

(τn), where

ρn = 1 − 6n

n2 − 1

n
∑

i=1

(

R̃i,n − S̃i,n

)2
and τn = −1 +

4

n(n− 1)

∑

i6=j

1 (Xi ≤ Xj, Yi ≤ Yj)

are their sample versions. Another estimator arises from the so-called pseudo maximum-
likelihood method, which is similar to the classical likelihood approach but where the
normalized ranks are used instead of the observations. The resulting estimator θ̂n,PL has
been studied by Genest et al. (1995), Shih & Louis (1995) and recently by Kim et al.
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(2006). Based on these three consistent estimators, one can build three goodness-of-fit
statistics of the form (4), namely

Sn1 =
√
n

(

θ̂n,ρ − θ̂n,τ

)

, Sn2 =
√
n

(

θ̂n,ρ − θ̂n,PL

)

and Sn3 =
√
n

(

θ̂n,τ − θ̂n,PL

)

. (6)

2.3. Shih’s goodness-of-fit test for the gamma frailty model

The dependence function associated to the bivariate gamma frailty model, also referred to
as Clayton’s copula, is given in Equation (13) to be found in Appendix B. Shih (1998) con-
sidered unweighed and weighted estimations of the dependence parameter θ via Kendall’s
tau τn and the weighted rank-based statistic

θ̂n,W =
∑

i<j

∆ij

Wij

/

∑

i<j

1 − ∆ij

Wij
,

where ∆ij = 1 {(Xi −Xj)(Yi − Yj) > 0} and

Wij =

n
∑

k=1

1 {Xk ≤ max(Xi,Xj), Yk ≤ max(Yi, Yj)} .

Since θ̂n,τ = 2τn/(1− τn) and θ̂n,W are both unbiased for θ under the null hypothesis that
C belongs to Clayton’s family of copulas, a version of a goodness-of-fit statistic proposed
by Shih (1998) is Sn4 =

√
n(θ̂n,τ − θ̂n,W ). One deduces from arguments to be found in

Shih (1998) that Sn4 is asymptotically normal under the null hypothesis. Unfortunately,
the variance provided by Shih (1998) was found to be wrong by Genest et al. (2006b),
where a corrected formula is provided. From the work of these authors, one may deduce
the asymptotic representation

Sn4 =
1√
n

n
∑

i=1

{Kθ(Xi, Yi) − Lθ(Xi, Yi)} + oP(1), (7)

where

Kθ(x, y) = 2(θ + 2)2
{

2
(

x−θ + y−θ − 1
)−1/θ

− x− y +
1

θ + 2

}

and

Lθ(x, y) = (θ + 1)(2θ + 1) log
(

x−θ + y−θ − 1
)−1/θ

− (θ + 1)2 log(xy) + θ.

Genest et al. (2006b) then used (7) to compute the asymptotic variance of Sn4, whose
complicated expression is given by

σ2
4(Cθ) =

136θ7 + 1352θ6 + 5171θ5 + 9449θ4 + 8281θ3 + 3001θ2 + 240θ + 18

3θ2(θ + 1)2(θ + 3)2

+
8(θ + 2)4

θ2(θ + 1)2
I1(θ) −

4(θ + 1)4

θ4

∞
∑

k=0

(−1)k

(k + 1 + 1/θ)2
− 8(θ + 1)(θ + 2)

θ3
I2(θ),
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where

I1(θ) =

∞
∑

k=0

Γ2(1/θ)

Γ(1/θ)

k!Γ (k + 1/θ)

Γ (k + 1 + 2/θ)
and I2(θ) =

∞
∑

k=0

Γ(2/θ)k!

(k + 1/θ) Γ (k + 1 + 2/θ)
.

3. Asymptotic behavior under local sequences

In order to derive non-degenerate limiting distributions for a given goodness-of-fit statistic
under the sequence (Qδn)n≥1 defined in Equation (1), one has to ensure that Qδn is close
to Q0 = Cθ in a certain sense. One such criteria is given by van der Vaart & Wellner
(1996), where it is supposed that

lim
n→∞

∫ 1

0

∫ 1

0

{

√
n

(

√

qδn(x, y) −
√

q0(x, y)
)

− δq̇0(x, y)

2
√

q0(x, y)

}2

dxdy = 0, (8)

for qδ being the density associated to Qδ and q̇δ = ∂qδ/∂δ. Note that condition (8) entails
that the sequence (Qδn)n≥1 is contiguous with respect to Q0. This is the key requirement
that enables to derive the asymptotic local representation of the goodness-of-fit statistics
Vn,N and Sn1, . . . ,Sn4. This is the subject of the remaining of this section.

3.1. Local behavior of some estimators of the dependence parameter

Many interesting estimators for the unknown parameter of a copula family admit the
asymptotic representation

Θn,Λ =
√
n

(

θ̂n,Λ − θ
)

=
1√
n

n
∑

i=1

ΛCθ

(

R̃i,n, S̃i,n

)

+ oP(1), (9)

where ΛCθ
: [0, 1]2 → [0, 1] is a twice differentiable score function such that for all θ ∈ M

and all (x, y) ∈ [0, 1]2, ECθ
{ΛCθ

(X,Y )} = 0 and |Λ′′
Cθ

(x, y)| ≤ gθ(x, y), where gθ and Λ2
Cθ

are integrable with respect to cθ(x, y) = ∂2Cθ(x, y)/∂x∂y. These conditions ensure that
Θn,Λ converges in law to

ΘΛ = Θ′
Λ +

∫

(0,1)2
ΛCθ ,10(x, y)β1(x)cθ(x, y)dxdy +

∫

(0,1)2
ΛCθ ,01(x, y)β2(y)cθ(x, y)dxdy,

where Θ′
Λ is the limit of n−1/2

∑n
i=1 ΛCθ

(Xi, Yi) and β1, β2 are uniform brownian bridges,
i.e. gaussian processes with covariance function cov{βj(s), βj(t)} = min(s, t)−st, j = 1, 2,
arising as the limits of

√
n{Fn(x)−x} and

√
n{Gn(y)−y} respectively. Here, ΛCθ,10(x, y) =

∂ΛCθ
(x, y)/∂x and ΛCθ,01(x, y) = ∂ΛCθ

(x, y)/∂y.
Among the estimators that admit representation (9), one has the inversion of Spear-

man’s rho and the pseudo-maximum likelihood estimator explored by Genest al. (1995)
and Shih & Louis (1995). More details will be given in Example 1 and Example 2. An-
other popular estimation strategy using a statistic that is not of the form (9) is based on
θ̂n,τ , i.e. on the inversion of Kendall’s measure of association.
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The next proposition, whose proof is deferred to Appendix A.1, identifies the asymp-
totic distribution of Θn,Λ and Θn,τ =

√
n(θ̂n,τ − θ) under contiguous alternatives of the

type (1). This result is a prerequisite in order to compute the local power of moment-based
goodness-of-fit statistics described in Section 2.2. It will also enable to characterize the
asymptotic behavior of the process Cn, and consequently that of Vn,N , under (Qδn)n≥1 for
several strategies that aim to estimate θ.

Proposition 1

Assume that condition (8) holds for the sequence (Qδn)n≥1. Then under (Qδn)n≥1,

(i) Θn,Λ  ΘΛ + δµΛ(Cθ,D), where µΛ(Cθ,D) = ED {ΛCθ
(X,Y )}−ECθ

{ΛCθ
(X,Y )} and

ΘΛ is a normal random variable with mean 0 and variance

σ2
Λ(Cθ) = var

{

ΛCθ
(X,Y ) +

∫ 1

0

∫ 1

X
ΛCθ,10(x, y)cθ(x, y) +

∫ 1

Y

∫ 1

0
ΛCθ,01(x, y)cθ(x, y)

}

;

(ii) Θn,τ  Θτ + δµτ (Cθ,D), where µτ (Cθ,D) = 4{τ ′Cθ
(θ)}−1 {ED(Cθ) − ECθ

(Cθ)} and
Θτ is a normal random variable with mean 0 and variance

σ2
τ =

16

{τ ′Cθ
(θ)}2

var {2Cθ(X,Y ) −X − Y } .

The next two examples are applications of part (i) of Proposition 1 when the estimator is
based on an inversion of Spearman’s rho and on the pseudo maximum-likelihood estimator.

Example 1. Let ρCθ
(θ) be the population value of Spearman’s measure of association

for a vector (X,Y ) with underlying copula Cθ. Then θ̂n,ρ = ρ−1
Cθ

(ρn) is a consistent
estimator for θ, where ρn is Spearman’s rank correlation coefficient. Using a Taylor ex-
pansion of order 1, one can show that this estimator can be written in the form (9) with
ΛCθ

(x, y) = {ρ′Cθ
(θ)}−1{12xy − 3 − ρCθ

(θ)}, where ρ′Cθ
(θ) = ∂ρCθ

(θ)/∂θ. Thus, under

the contiguous sequence (1), Θn,ρ =
√
n(θ̂n,ρ − θ) is asymptotically normal with drift

parameter µρ(Cθ,D) = {ρ′Cθ
(θ)}−1{ρD − ρCθ

(θ) and variance

σ2
ρ(Cθ) =

144

{ρ′Cθ
(θ)}2

var

{

XY +

∫ 1

0

∫ 1

X
ycθ(x, y)dxdy +

∫ 1

Y

∫ 1

0
xcθ(x, y)dxdy

}

.

Example 2. Let θ̂n,PL be the pseudo likelihood estimator. From the work of Genest et
al. (1995), one has representation (9) with ΛCθ

(x, y) = β−1
Cθ
ℓ′Cθ

(x, y), where ℓCθ
(x, y) =

log cθ(x, y) and βCθ
= ECθ

[{ℓ′Cθ
(X,Y )}2], with ℓ′Cθ

= ∂ℓCθ
/∂θ. An application of Propo-

sition 1 shows that Θn,PL =
√
n(θ̂n,PL − θ) converges in law to a normal distribution with

variance σ2
PL(Cθ) = β−2

Cθ
var{ℓ′Cθ

(X,Y ) −WCθ,1(X) −WCθ,2(Y )}, where

WCθ,1(u) =

∫ 1

u

∫ 1

0
ℓ′Cθ

(x, y)ℓ′Cθ ,1(x, y)cθ(x, y)dxdy
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and

WCθ ,2(u) =

∫ 1

0

∫ 1

u
ℓ′Cθ

(x, y)ℓ′Cθ ,2(x, y)cθ(x, y)dxdy,

with ℓ′Cθ ,1(x, y) = ∂ℓCθ
(x, y)/∂x and ℓ′Cθ,2(x, y) = ∂ℓCθ

(x, y)/∂y. The asymptotic mean is

µPL(Cθ,D) = β−1
Cθ

ED

{

ℓ′Cθ
(X,Y )

}

− β−1
Cθ

ECθ

{

ℓ′Cθ
(X,Y )

}

= β−1
Cθ

ED

{

ℓ′Cθ
(X,Y )

}

,

since by Lebesgue’s dominated convergence theorem,

ECθ

{

ℓ′Cθ
(X,Y )

}

=

∫ 1

0

∫ 1

0
ċθ(x, y) dx dy =

∂

∂θ

∫ 1

0

∫ 1

0
cθ(x, y) dx dy = 0.

3.2. Local behavior of the goodness-of-fit statistics

The first theoretical result of this section establishes the large-sample behavior of Cn under
the sequence (Qδn)n≥1. It is assumed that the estimator of θ is either of the form (9) or
based on the inversion of Kendall’s tau.

Proposition 2

Suppose condition (8) and Assumptions A1–A2 hold and assume that Θn =
√
n(θ̂n − θ)

converges in law to Θ̃ = Θ + δµ(Cθ,D) under the sequence (1), where Θ is the limit in
law of Θn under H0. Then under (Qδn)n≥1, the empirical process Cn =

√
n(Cn − Cθ̂n

)
converges weakly to

C̃ = C + δ
{

D − Cθ − µ(Cθ,D)Ċθ

}

,

where C is the weak limit of Cn under H0 and Ċθ = ∂Cθ/∂θ.

Remark. As one may expect, a sequence of the form Qδn = Cθ+δn yields absolutely no
power for statistics based on Cn since Qδn ∈ F in that case. Indeed, as one can deduce from
computations made in the proof of Proposition 2, condition (8) enounced in van der Vaart
& Wellner (1996) implies that Cn,θ converges to Cθ +δĊθ. Moreover, since Θn converges to
Θ+δ in that case,

√
n(Cθ̂n

−Cθ) converges to (Θ+δ)Ċθ , so that Cn = Cn,θ−
√
n(Cθ̂n

−Cθ)
converges to C, i.e. to the same limit as under H0.

The asymptotic local behavior of the moment-based goodness-of-fit statistics (6) can easily
be obtained as consequences of Proposition 1. This is the subject of Proposition 3, whose
straightforward proof is omitted.

Proposition 3

Suppose condition (8) holds. Then under (Qδn)n≥1,
(i) Sn1  S1 + δ {µρ(Cθ,D) − µτ (Cθ,D)};

(ii) Sn2  S2 + δ {µρ(Cθ,D) − µPL(Cθ,D)};

(iii) Sn3  S3 + δ {µτ (Cθ,D) − µPL(Cθ,D)}.
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This result implies that the limiting distribution of Snj, j = 1, 2, 3 under the contiguous
sequence is normal with some mean δµj(Cθ,D) and variance σ2

j (Cθ). As long as µ(Cθ,D) 6=
0, a goodness-of-fit procedure based on Snj will yield power locally.

3.3. Shih’s statistic under contiguity

The asymptotic behavior of Sn4 under the contiguous sequence (Qδn)n≥1 will follow from
an application of Lecam’s third lemma and the asymptotic representation (7). The result
is summarized in Proposition 4.

Proposition 4

Under the contiguous sequence (Qδn)n≥1, the goodness-of-fit statistic Sn4 converges in law

to a normal distribution with variance σ2
4(Cθ) and mean δη1(Cθ,D) − δη2(Cθ,D), where

η1(Cθ,D) = 4(θ + 2)2 {ED(Cθ) − ECθ
(Cθ)} ,

η2(Cθ,D) = (θ + 1)(θ + 2)

∫ 1

0

∫ 1

0
{d(u, v) − cθ(u, v)} logCθ(u, v)dudv

− (θ + 1)2
∫ 1

0

∫ 1

0
{d(u, v) − cθ(u, v)} log uvdudv.

4. Local power comparisons

In this section, the asymptotic power of the goodness-of-fit tests based on Vn,N and
Sn1, . . . ,Sn4 are investigated under alternatives of the form (1). Here, C and D are
chosen to be in the same family with different levels of dependence. In other words, local
alternatives of the form Qδn(x, y) = (1 − δn)Cθ(x, y) + δnCθ′(x, y) are considered, where
θ < θ′. It is assumed that θ is a dependence parameter for the family {Cθ; θ ∈ M}, i.e.
Cθ(x, y) ≤ Cθ′(x, y) for all (x, y) ∈ [0, 1]2. This requirement is fulfilled for most families of
copulas. The above mixture distribution can represent a setting where the data generating
process stays in the same family over time but the dependence strength suddenly changes,
c.f. regime-shifting models. Structural changes of this kind can occur in mean-reverting
processes such as those driving oil and other commodity prices, where the dependence
pattern, i.e. the copula family, remains the same over time but the strength of this link
becomes significantly stronger or weaker at some moment.

The following analyses will consider local distributions involving mixtures of Clayton,
Frank, Gumbel–Barnett and Normal copulas whose analytical expressions are given in
equations (13)–(16) to be found in Appendix B.

4.1. Efficiency of the empirical copula process under various estimation strategies

Here, the influence of the estimation strategy on the power of the Cramér–von Mises
statistics is investigated under local sequences. Here and in the sequel, Cn,N,ρ, Cn,N,τ

and Cn,N,PL refer to the empirical copula goodness-of-fit process with the estimation of θ
based respectively on Spearman’s rho, Kendall’s tau and the pseudo-likelihood approach.
Similarly, Vρ

n,N , Vτ
n,N and VPL

n,N are the associated Cramér–von Mises functionals.
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Table 1: Drift terms for the estimators based on Spearman’s rho, the pseudo-
maximum likelihood and Kendall’s tau under mixtures of Clayton, Frank, Gumbel–
Barnett and Normal copulas

τCθ
τD Model µρ µPL µτ Model µρ µPL µτ

0.1 0.2 0.244 0.250 0.030 0.901 0.926 0.111
0.1 0.3 0.475 0.487 0.059 1.789 1.815 0.231
0.1 0.4 0.692 0.697 0.086 2.615 2.704 0.333
0.1 0.5 Clayton 0.889 0.882 0.114 Frank 3.385 3.519 0.435
0.4 0.5 0.527 0.544 0.067 1.319 1.381 0.164
0.4 0.6 0.996 0.995 0.128 2.436 2.619 0.315
0.4 0.7 1.384 1.393 0.183 3.351 3.810 0.452
0.4 0.8 1.679 1.786 0.228 4.021 4.762 0.548
0.1 0.2 0.099 0.101 0.013 0.154 0.154 0.019
0.1 0.3 0.192 0.198 0.025 0.301 0.302 0.037
0.1 0.4 0.281 0.290 0.037 0.440 0.443 0.054
0.1 0.5 Gumbel– 0.485 0.379 0.049 Normal 0.565 0.572 0.071
0.4 0.5 Barnett 0.096 0.101 0.016 0.120 0.123 0.017
0.4 0.6 0.179 0.195 0.029 0.226 0.228 0.032
0.4 0.7 0.250 0.282 0.044 0.312 0.315 0.046
0.4 0.8 0.303 0.797 0.068 0.377 0.387 0.062

According to Proposition 2, the weak limits of the empirical copula goodness-of-fit
processes Cn,N,ρ, Cn,N,τ and Cn,N,PL under the contiguous sequence (Qδn)n≥1 are

C̃ρ = Cρ + δ(g − µρĊθ), C̃τ = Cτ + δ(g − µτ Ċθ) and C̃PL = CPL + δ(g − µPLĊθ),

where Cρ, Cτ and CPL are the respective limits under H0 and g(x, y) = D(x, y)−Cθ(x, y).
Computations of µρ, µτ and µPL are detailed in Appendix B for mixtures of Clayton,
Frank, Gumbel–Barnett and Normal copulas. The results are reported in Table 1. Gener-
ally speaking, these drift terms are higher for Θn,ρ and Θn,PL than for Θn,τ . This indicates
that the estimator based on Kendall’s tau is more robust under perturbations of H0 of the
type Qδn , which is not necessarily a good property for goodness-of-fit testing where one
wants to detect departures from H0.
There is no hope to obtain explicit representations for the asymptotic distributions of
Vρ

n,N , Vτ
n,N and VPL

n,N , and consequently for the associated power curves. A procedure to
overcome this difficulty is explained next in order to compute the local power curve of the
Cramér–von Mises tests. For simplicity, only the case involving Vρ

n,N is detailed.
First note that under (Qδn)n≥1,

Vρ
n,N  Ṽρ =

∫ 1

0

∫ 1

0

{

C̃ρ(x, y)
}2

dxdy =

∫ 1

0

∫ 1

0
{Cρ(x, y) + δhρ(x, y)}2 dxdy,

where hρ(x, y) = D(x, y) − Cθ(x, y) − µρ(Cθ,D)Ċθ(x, y). Hence, for large values of n and
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N , an approximation is given by

Ṽρ
n,N =

∫ 1

0

∫ 1

0
{Cn,N,ρ(x, y) + δhρ(x, y)}2dxdy,

where Cn,N,ρ is the empirical copula goodness-of-fit process where θ is estimated through
an inversion of Spearman’s rho. One can see that Ṽρ

n,N = Vρ
n,N + 2δV1 + δ2V2, where

V1 =

∫ 1

0

∫ 1

0
hρ(x, y)Cn,N,ρ(x, y)dxdy

=
1√
n

n
∑

i=1

∫ 1

R̃i,n

∫ 1

S̃i,n

hρ(x, y)dxdy −
√
n

∫ 1

0

∫ 1

0
hρ(x, y)Cθ̂n,ρ

(x, y)dxdy

and

V2 =

∫ 1

0

∫ 1

0
{hρ(x, y)}2 dxdy.

In Figure 1 and Figure 2, the local power curves of the Cramér–von Mises test statistic
computed under the three considered estimation strategies using the above approximations
with n = 2500 and N = 2500 are reported under mixtures of Clayton, Frank, Gumbel–
Barnett and Normal copulas. The strength of the dependence of the null copula C and
of the perturbation copula D, as measured by Kendall’s tau, are (τC , τD) = (0.1, 0.5) in
Figure 1 and (τC , τD) = (0.4, 0.8) in Figure 2.
It is first interesting to note that surprisingly, the choice of the estimator has a significant
impact on the local power curves in almost all cases considered, except under Normal
mixtures. Under Clayton alternatives, the conclusions are the same in Figure 1 and
Figure 2, namely that Vτ

n,N has a significantly much larger local power than its two com-
petitors. Overall, Vρ

n,N is the least powerful locally. Probably due to the fact that the
drift terms µτ associated to the estimation by Kendall’s tau are small (see Table 1), Vτ

n,N

performs generally very well, especially in the case of small level of dependence, i.e. for
(τC , τD) = (0.1, 0.5). For higher degrees of dependence, VPL

n,N is often better than Vτ
n,N

and constitutes a good choice under all scenarios, except for Clayton mixtures.

4.2. Comparison of the empirical copula process with the moment-based statistics

In view of Propositions 3 and 4, the asymptotic local power curves β1, . . . , β4 of the
goodness-of-fit tests based on Sn1, . . . ,Sn4 are of the form

βj(δ, Cθ,D) = 1 − Φ

{

zα/2 −
∣

∣

∣

∣

δµj(Cθ,D)

σj(Cθ)

∣

∣

∣

∣

}

+ Φ

{

−zα/2 −
∣

∣

∣

∣

δµj(Cθ,D)

σj(Cθ)

∣

∣

∣

∣

}

, (10)

where zα/2 is the (1 − α/2)-th percentile of a N (0, 1) distribution. Here, µ1 = µρ − µτ ,
µ2 = µρ −µPL, µ3 = µτ −µPL and µ4 = η1 − η2. In view of equation (10), the local power
of the test based on Snj only depends on the absolute value of the ratio µj(Cθ,D)/σj(Cθ),
i.e. the asymptotic local efficiency. Some values of µ1, µ2 and µ3 are reported in Table 2
under the four choices of mixture distributions. The highest local efficiencies, i.e. the one
that yields the most power locally among the three, are identified in bold.
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Figure 1: Asymptotic local power curves of the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N

under mixtures of (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal
copulas with τC = 0.1 and τD = 0.5.

Table 2 establishes a clear picture of which statistic is the best under a given scenario
of mixture distributions : for Clayton, Gumbel–Barnett and Normal mixtures, Sn1 is the
most powerful locally, while Sn3 is the best for local mixtures of Frank copulas. The test
statistic Sn2 is very poor in all cases, except when (τC , τD) = (0.4, 0.8) under Gumbel–
Barnett alternatives. It is also interesting to note that under Clayton mixtures, Sn1

performs better than Shih’s statistic Sn4, even if the latter is specifically conceived for this
particular case. To come to this conclusion, note that |µ4|/σ4 = 0.655 when (τC , τD) =
(0.1, 0.5) and |µ4|/σ4 = 0.347 when (τC , τD) = (0.4, 0.8).
Figure 3 compares the local power curves of Sn1, Sn2 and Sn3 to the best statistic among
Vn,N,ρ, Vn,N,τ and Vn,N,PL according to the results of subsection 4.1. Only the case
(τC , τD) = (0.4, 0.8) is considered. For the mixture of Clayton copulas, the goodness-
of-fit statistic of Shih, suitable only for this family, is also investigated.
The test statistic Sn1 exhibit high power locally in all cases, while Sn3 also performs
very well. The most surprising discovery here is the rather poor performance of the
Cramér–von Mises statistics compared to the very simple, asymptotically normal moment-
based statistics. These conclusions must however be treated with care since the nature of
the alternative distributions considered could have favored the moment-based statistics.
Nevertheless, the latter deserve further investigations under other types of alternatives.
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Figure 2: Asymptotic local power curves of the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N

under mixtures of (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal
copulas with τC = 0.4 and τD = 0.8.

Also, multivariate extensions of Sn1, . . . ,Sn4 could be considered as serious competitors
to Vρ

n,N , Vτ
n,N and VPL

n,N , the latter being very costly in terms of computing time.
In some cases, e.g. in panel (b) of Figure 3, it is difficult to decide whether Sn2 performs

better than VPL
n,N , locally. A way to circumvent this problem consists in computing some

measure of asymptotic relative efficiency. This idea is developed in the next section.

5. Asymptotic relative efficiencies

5.1. A new ARE measure

For a goodness-of-fit statistic whose limiting distribution is normal with mean δµ(Cθ,D)
and variance σ2(Cθ), the associated local power curve β(δ, Cθ,D) is an increasing function
of µ(Cθ,D)/σ(Cθ,D) for all fixed values of δ > 0. It thus seems natural to compare the
efficiency of two such statistics Snj and Snk via Pitman’s measure of asymptotic relative
efficiency (ARE), namely

AREPitman(Snj,Snk) =

{

µj(Cθ,D)/σj(Cθ)

µk(Cθ,D)/σk(Cθ)

}2

.
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Table 2: Asymptotic local efficiency terms for the test statistics Sn1, Sn2 and Sn3

under mixtures of Clayton, Frank, Gumbel–Barnett and Normal copulas

Mixture Sn1 Sn2 Sn3 Mixture Sn1 Sn2 Sn3

τCθ
τD model |µ1|/σ1 |µ2|/σ2 |µ3|/σ3 model |µ1|/σ1 |µ2|/σ2 |µ3|/σ3

0.1 0.2 1.627 0.006 0.227 3.329 0.065 4.269

0.1 0.3 3.163 0.013 0.442 6.566 0.067 8.298

0.1 0.4 4.608 0.009 0.632 9.617 0.230 12.420

0.l 0.5 Clayton 5.894 0.005 0.794 Frank 12.432 0.346 16.155

0.4 0.5 0.762 0.007 0.234 1.162 0.039 1.873

0.4 0.6 1.438 0.000 0.426 2.134 0.115 3.547

0.4 0.7 1.989 0.004 0.594 2.916 0.290 5.169

0.4 0.8 2.403 0.046 0.765 3.494 0.468 6.487

0.1 0.2 1.920 0.006 0.289 3.971 0.000 0.444
0.1 0.3 3.728 0.019 0.568 7.765 0.003 0.871
0.1 0.4 5.446 0.029 0.831 11.353 0.010 1.278
0.1 0.5 Gumbel– 9.732 0.338 1.084 Normal 14.529 0.023 1.646
0.4 0.5 Barnett 0.795 0.017 0.361 1.459 0.011 0.446
0.4 0.6 1.491 0.056 0.706 2.748 0.007 0.824
0.4 0.7 2.048 0.112 1.012 3.768 0.011 1.131
0.4 0.8 2.336 1.725 3.099 4.462 0.036 1.367

In bold, the most powerful statistic locally among Sn1, Sn2 and Sn3

However, it is not entirely clear how to extend this measure in the case when the limiting
distribution of a test statistic is no longer normal, which is the case with many of the
goodness-of-fit statistics. A generalization of Pitman’s measure proposed by Genest et al.
(2006c) and Genest et al. (2007) is

ÃRE(Snj ,Snk) = lim
δ→0

βSnj (δ) − βSnj (0)

βSnk
(δ) − βSnk

(0)

in terms of the local power functions βSnj , βSnk
of two tests Snj and Snk. For most

cases of interest, however, this measure requires the derivatives of the power curves in a
neighborhood of δ = 0. Since the asymptotic local power functions of the tests based on
Vn,N,ρ, Vn,N,τ and Vn,N,PL admit no explicit representations, this causes a serious problem
when trying to apply the latter definition.

Here, another generalization of AREPitman is proposed :

ARE(Snj ,Snk) =

{

lim
M→∞

∫ M
0 {1 − βSnk

(δ)} dδ
∫ M
0

{

1 − βSnj (δ)
}

dδ

}2

. (11)

The first motivation for such a definition is the possibility to estimate
∫ M
0

{

1 − βSnj (δ)
}

dδ

and
∫ M
0 {1 − βSnk

(δ)} dδ when accurate approximations β̂Snj and β̂Snk
are available. This

is the case for the power curves of the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N . To be spe-

cific, suppose β̂(δ) is available at the points iM/N , i = 1, . . . ,N , for sufficiently large
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Figure 3: Asymptotic local power of the Cramér–von Mises tests and of Sn1, Sn2,
Sn3 and Sn4 under (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal
mixtures with τC = 0.4 and τD = 0.8.

N in order to achieve some numerical accuracy. Upper and lower approximations of
∫ M
0

{

1 − βSnj (δ)
}

dδ are

I1 =
M

N

N
∑

i=1

{

1 − β̂

(

iM

N

)}

and I2 =
M

N

N−1
∑

i=0

{

1 − β̂

(

iM

N

)}

,

and the chosen approximation, provided M is selected such that β̂(M) = 1, is

I1 + I2
2

=
M

N

N−1
∑

i=1

{

1 − β̂

(

iM

N

)}

+
M

N

(

1 − α

2

)

.

Another interesting feature of ARE(Snj,Snk) is the fact that it generalizes Pitman’s notion
of asymptotic relative efficiency. To see this, let β(δ) = 1−Φ(zα/2 − δµ) + Φ(−zα/2 − δµ)
and compute
∫ ∞

0
{1 − β(δ)} dδ =

∫ ∞

0
Φ

(

zα/2 − δµ
)

dδ −
∫ ∞

0
Φ

(

−zα/2 − δµ
)

dδ

=
1

µ

{
∫ zα/2

−∞
Φ(x)dx−

∫ −zα/2

−∞
Φ(x)dx

}

=
1

µ

∫ zα/2

−zα/2

Φ(x)dx =
zα/2

µ
.
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As a consequence, one has

∫ ∞

0
{1 − βj(δ, Cθ,D)} dδ = zα/2

{

µj(Cθ,D)

σj(Cθ)

}−1

(12)

for local power functions of the form (10). Computations of ARE for some of the goodness-
of-fit statistics encountered in this paper are provided in the next subsection.

5.2. Local efficiency comparisons

In all situations considered in subsection 4.2, the best moment-based statistic locally
outperform the best Cramér–von Mises statistic. Hence, it seems useless to compare the
latter in terms of their asymptotic relative efficiency. However, since the power curves of
Vρ

n,N , Vτ
n,N and VPL

n,N are often very close to each other, such computations could be very
interesting. They are presented in Table 3.

Table 3: Estimated values of limM→∞

∫ M

0
{1−β(δ)}dδ for the goodness-of-fit statis-

tics Vρ
n,N , Vτ

n,N and VPL
n,N and asymptotic relative efficiencies under mixtures of Clay-

ton, Frank, Gumbel–Barnett and Normal copulas.

Mixture limM→∞

∫ M

0
{1 − β(δ)}dδ Asymptotic relative efficiency

model τCθ
τD Vρ

n,N Vτ
n,N VPL

n,N (Vρ
n,N ,Vτ

n,N ) (Vρ
n,N ,VPL

n,N ) (Vτ
n,N ,VPL

n,N)

Clayton 0.1 0.5 12.018 2.540 12.618 0.211 1.050 4.968
0.4 0.8 23.469 8.349 26.091 0.356 1.112 3.125

Frank 0.1 0.5 17.464 2.381 17.594 0.136 1.007 7.389
0.4 0.8 29.483 27.079 8.670 0.918 0.294 0.320

Gumbel– 0.1 0.5 5.954 2.506 16.143 0.421 2.711 6.442
Barnett 0.4 0.8 30.369 9.282 5.475 0.306 0.180 0.590

Normal 0.1 0.5 3.142 2.491 3.150 0.793 1.003 1.265
0.4 0.8 8.390 8.527 8.609 1.016 1.026 1.010

These computations show, among other things, that Vτ
n,N is generally more powerful than

VPL
n,N for low dependence alternatives, i.e. close to independence. An opposite conclusion

arises for mixture of high dependence copulas, namely when (τC , τD) = (0.4, 0.8). The
performance of V PL

n,N and V ρ
n,N are quite similar for low dependence, except under Gumbel–

Barnett mixtures. Overall, V τ
n,N seems the best choice close to the independence copula,

while V PL
n,N performs well under high levels of dependence.

Looking back at panel (b) of Figure 3, it is difficult to decide whether Sn2 performs
better than VPL

n,N . Even though the local power curve of VPL
n,N reaches 1 more quickly, the
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asymptotic relative efficiency is given by ARE(VPL
n,N ,Sn2) = 0.950, which supports the

choice of Sn2 if a mixture of Frank distributions is suspected as a possible alternative.

6. Sensitivity in small samples

This section is devoted to the sensitivity in small samples and under fixed alternatives of
the test statistics encountered in this paper, namely Vρ

n,N , Vτ
n,N,, VPL

n,N , Sn1, Sn2, Sn3 and
Sn4. The main goal is to relate the asymptotic local efficiency results of Section 4 and
Section 5 with empirical situations. In subsection 6.1, the specific influence of the estima-
tors on the power of the Cramér–von Mises statistics is investigated. In subsection 6.2,
comparisons with the moment-based statistics are made. These results will be paralleled
with those presented in subsections 4.1 and 4.2 under contiguous sequences.

6.1. Influence of the estimators on the power of the Cramér–von Mises statistics

It was seen in subsection 4.1 that the asymptotic local powers of the goodness-of-fit tests
based on the empirical copula process are sensitive to the choice of the estimator of the
dependence parameter, at least under the mixture distributions considered. In this section,
the ability of Vρ

n,N , Vτ
n,N and VPL

n,N to reject the null hypothesis is first examined under
fixed alternatives and many sample sizes. The results can be found in Tables 4–7. First
note that all 5% nominal levels are maintained, keeping in mind a margin of error of the
magnitude of ±1% when estimating proportions from 10 000 replicates.
When Clayton’s family of copulas is in the null hypothesis, one can see from Table 4 that
Vρ

n,N performs very well against all alternatives, especially in small samples, while Vτ
n,N is

almost as powerful. The latter are significantly superior to VPL
n,N under Gumbel–Barnett

alternatives, especially in small samples. The performance of VPL
n,N however surpasses that

of Vρ
n,N and Vτ

n,N under Frank and Normal alternatives, and this advantage is particularly
marked for higher degrees of dependence.

Things are much simpler in Table 5 when testing the membership to Frank’s family,
where the three considered estimation strategies yield almost the same power for the
Cramér–von Mises statistics. For the null hypothesis of belonging to Gumbel–Barnett’s
class, the statistic VPL

n,N is remarkably better than its two competitors under Frank and
Normal alternatives, especially for large sample sizes, as one can notice from the entries
in Table 6. An opposite conclusion must however be made under Clayton alternatives,
where Vρ

n,N and Vτ
n,N are slightly better.

Finally, the most powerful statistics for testing the Normal hypothesis are Vρ
n,N and

Vτ
n,N under Clayton alternatives, while VPL

n,N is the best choice under observations that
come from the Frank copula. Here again, the performance of the latter increases as the
sample size becomes larger.

In a second series of analyses, the power of the Cramér–von Mises statistics under
mixture distributions of the type Qδn = (1 − δn)Cθ + δnCθ′ have been considered for
samples of size n = 500. The corresponding empirical power curves are presented in
Figure 4. In this setting, 100 × δ/

√
500 % of the observations come from the distribution

Cθ′ , so the power increases with δ. However, from a certain threshold, the observed powers
suddenly decreases toward the nominal level. This occurs because Cθ′ also belongs to the
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Table 4: Estimated percentage of rejection of the null hypothesis of belonging to
Clayton’s family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2

and Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 5.0 4.5 4.2 3.2 3.4 6.2 22.4 20.2 12.0 2.7 11.2 6.0
0.15 5.7 5.0 5.2 3.1 4.2 7.2 38.7 36.6 24.0 2.3 18.6 11.0
0.20 6.0 5.5 5.6 2.8 4.5 6.8 55.4 53.3 38.6 1.4 27.6 19.1

250 0.10 5.1 4.6 5.1 3.9 4.9 6.1 37.7 36.1 26.6 2.4 33.8 26.6
0.15 5.3 5.1 5.0 4.0 4.9 5.9 65.4 64.6 53.2 1.7 58.2 49.9
0.20 5.1 5.3 5.1 3.1 5.1 5.9 86.2 85.5 77.7 1.1 78.0 74.5

500 0.10 5.0 5.0 4.3 3.5 5.1 5.3 57.1 54.9 46.6 1.3 64.8 59.8
0.15 5.6 5.1 4.8 4.8 4.9 5.7 86.6 86.2 79.9 1.4 90.1 88.2
0.20 5.0 5.2 5.3 3.6 5.1 5.8 97.5 97.3 95.6 1.1 98.4 98.2

1000 0.10 5.1 5.1 4.7 3.0 5.2 5.4 73.3 73.8 69.7 0.6 90.5 89.9
0.15 4.8 5.3 5.3 5.0 5.5 5.7 97.4 97.5 96.0 0.8 99.7 99.7
0.20 5.1 5.3 5.3 4.8 4.9 5.2 99.9 100 99.9 2.2 100 100

2500 0.10 4.7 4.7 6.2 4.2 4.8 5.2 90.1 89.8 90.5 0.4 99.9 99.9
0.15 4.8 4.8 5.5 4.7 4.3 4.6 99.9 99.9 99.9 0.3 100 100
0.20 4.5 5.3 5.5 5.8 5.9 5.2 100 100 100 13.0 100 100

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 12.8 11.6 8.1 3.9 7.5 3.8 12.3 11.2 6.7 3.4 5.6 3.1
0.15 20.8 19.2 13.9 4.3 11.0 4.8 20.2 18.4 11.5 3.6 8.0 3.9
0.20 31.3 29.5 23.9 5.1 17.6 9.3 29.4 26.9 17.9 3.2 11.5 6.1

250 0.10 18.8 18.3 17.8 4.7 24.0 16.4 18.6 17.3 12.7 4.0 17.4 11.4
0.15 36.0 34.8 36.5 7.3 44.0 34.2 33.0 32.3 25.5 5.3 29.4 21.1
0.20 55.7 54.6 58.3 9.3 64.7 56.5 49.7 47.8 41.2 5.0 44.3 36.1

500 0.10 28.7 27.1 32.0 5.3 49.9 42.8 25.8 24.6 20.8 3.9 35.8 29.1
0.15 54.5 52.9 61.3 10.2 81.2 75.4 48.6 46.9 43.6 7.0 61.4 53.7
0.20 77.1 76.1 84.7 14.1 95.3 93.6 69.7 68.4 66.7 7.9 81.8 78.0

1000 0.10 37.3 37.8 50.5 5.5 81.4 78.2 33.8 33.0 35.5 3.9 63.6 59.5
0.15 72.3 72.3 83.5 15.7 98.7 98.1 66.7 65.8 65.8 10.2 92.5 89.4
0.20 92.4 92.8 97.6 25.0 100 100 88.2 87.3 89.4 15.2 99.0 98.8

2500 0.10 50.2 48.5 73.3 9.0 99.6 99.6 43.4 42.4 52.4 5.8 96.1 95.9
0.15 88.9 88.6 96.5 20.5 100 100 83.5 82.2 88.0 14.0 100 100
0.20 99.1 99.2 99.9 40.4 100 100 97.5 97.8 98.6 28.7 100 100
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Table 5: Estimated percentage of rejection of the null hypothesis of belonging to
Frank’s family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2 and
Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 7.1 6.4 6.4 4.0 1.1 6.5 10.5 9.6 10.0 3.0 1.0 6.5
0.15 11.3 10.2 10.4 3.6 1.3 8.3 15.2 14.2 14.6 2.4 1.0 8.5
0.20 16.3 14.8 15.5 2.6 1.1 10.1 17.3 17.0 17.3 1.8 1.3 11.0

250 0.10 12.7 12.0 12.9 3.2 1.6 9.4 12.6 12.8 12.9 2.1 0.8 9.6
0.15 24.8 24.8 26.0 2.3 1.4 15.1 19.7 19.6 20.3 0.9 1.6 15.4
0.20 43.4 43.5 43.7 1.4 2.3 18.9 28.3 29.6 29.6 0.5 3.7 20.3

500 0.10 22.6 22.1 21.7 2.8 1.1 15.9 16.5 16.2 16.0 1.0 1.0 16.1
0.15 47.3 47.1 47.0 1.8 2.4 25.9 28.3 28.6 28.8 0.5 5.1 27.1
0.20 73.2 74.2 73.7 1.0 6.5 31.8 42.8 45.7 45.1 1.0 14.4 34.1

1000 0.10 36.4 39.3 38.5 2.2 1.5 26.8 21.4 22.9 22.7 0.4 3.6 29.0
0.15 72.5 73.1 72.1 1.3 8.4 41.7 41.1 42.8 41.9 0.9 19.2 45.8
0.20 92.8 92.9 93.2 1.3 18.0 47.9 60.6 62.1 63.9 8.0 37.1 54.7

2500 0.10 53.2 52.2 51.9 1.4 8.5 51.1 26.0 26.2 26.5 1.0 26.3 59.5
0.15 90.6 91.1 91.5 1.1 32.3 74.8 53.6 56.0 56.9 19.8 66.0 82.4
0.20 99.6 99.5 99.4 10.9 54.1 79.9 79.9 79.7 81.2 65.9 85.6 88.7

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 6.0 5.6 5.5 4.6 2.3 4.3 6.0 5.1 5.4 3.8 2.1 4.7
0.15 6.0 5.7 5.6 4.5 2.8 4.5 6.4 5.7 5.7 3.6 2.5 5.0
0.20 5.4 5.4 5.2 4.5 3.3 4.7 6.7 6.4 6.7 3.3 2.8 5.9

250 0.10 4.8 4.9 4.9 4.2 3.1 4.5 6.2 5.6 6.0 3.3 3.2 5.3
0.15 4.8 4.7 4.7 3.9 3.4 4.6 6.6 6.0 6.3 2.8 3.5 6.6
0.20 4.5 5.1 4.8 4.2 3.6 4.7 8.3 7.7 7.9 2.0 3.0 7.8

500 0.10 4.6 4.6 4.5 3.9 4.1 4.6 6.2 5.6 5.4 2.7 3.7 6.6
0.15 4.7 4.9 4.6 4.5 4.2 5.2 8.0 7.5 7.6 2.2 4.3 8.1
0.20 5.0 5.3 5.1 4.7 4.4 5.1 10.8 11.4 10.1 1.6 4.1 8.6

1000 0.10 4.3 5.9 5.1 4.7 4.7 5.3 7.3 7.6 6.8 2.5 4.1 8.2
0.15 5.4 5.7 5.1 5.0 5.0 5.1 9.8 10.3 9.2 1.6 3.9 8.9
0.20 4.8 5.1 5.1 4.7 4.9 4.7 14.7 14.3 13.8 1.0 3.5 8.8

2500 0.10 5.3 5.1 4.3 4.6 4.6 4.4 7.6 7.4 6.8 1.7 4.5 9.0
0.15 5.0 5.5 5.0 4.8 5.1 5.7 10.9 11.3 11.2 1.2 4.8 11.2
0.20 5.4 5.0 5.3 4.2 4.7 4.5 17.2 16.2 17.3 0.6 4.0 9.5
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Table 6: Estimated percentage of rejection of the null hypothesis of belonging to
Gumbel–Barnett’s family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N ,
Sn1, Sn2 and Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 9.3 7.9 5.4 6.2 16.5 5.8 3.6 3.7 4.9 5.7 5.9 7.0
0.15 18.8 16.8 12.1 7.6 22.4 7.2 4.7 4.3 5.2 5.6 5.1 6.3
0.20 31.5 29.9 22.2 7.8 26.7 9.6 4.9 4.7 5.3 5.3 4.4 4.8

250 0.10 26.8 25.1 20.7 8.4 36.3 24.2 4.6 4.5 5.4 5.5 5.8 5.9
0.15 53.9 52.4 45.7 9.4 53.1 38.4 4.8 4.9 4.9 4.9 5.0 4.8
0.20 78.9 77.5 70.6 10.4 67.9 55.1 5.2 5.0 5.0 5.1 4.7 4.6

500 0.10 48.8 48.0 41.7 9.9 59.8 51.8 4.7 5.1 4.8 4.8 4.9 4.8
0.15 83.2 83.0 78.6 12.4 83.8 78.1 5.1 5.0 5.6 4.1 5.0 4.7
0.20 96.9 96.8 95.6 13.0 94.2 92.3 4.9 4.4 4.7 4.4 5.1 4.9

1000 0.10 73.5 72.4 69.1 13.6 88.8 85.9 5.0 4.8 5.6 4.8 4.9 4.8
0.15 97.5 97.0 96.7 19.3 98.9 98.7 5.1 4.9 5.3 4.5 4.8 5.1
0.20 100 100 99.9 22.5 99.9 99.9 5.3 4.9 5.3 4.6 5.0 4.8

2500 0.10 92.6 91.6 90.4 16.3 99.9 99.9 5.8 4.9 5.0 3.5 5.6 5.4
0.15 99.9 99.9 99.9 35.0 100 100 5.6 5.2 5.6 4.4 5.2 4.9
0.20 100 100 100 41.7 100 100 5.5 5.0 5.3 5.2 5.1 5.5

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 4.2 3.8 3.2 7.7 13.2 4.7 4.0 3.6 3.0 7.2 10.3 4.1
0.15 5.4 5.2 5.1 9.7 16.4 4.6 4.9 4.3 3.8 8.5 11.9 3.7
0.20 7.3 7.3 7.1 12.9 20.1 4.8 5.6 5.0 4.4 9.5 12.2 3.0

250 0.10 7.2 7.4 10.1 10.2 27.7 16.5 6.4 6.3 6.6 9.5 18.4 10.7
0.15 12.8 13.0 18.1 15.3 42.0 26.0 10.4 9.8 9.8 11.9 25.3 13.4
0.20 18.2 18.4 27.2 22.1 55.8 38.8 15.2 13.7 13.6 16.1 32.1 17.9

500 0.10 12.4 12.9 21.4 14.4 48.7 38.8 10.3 10.2 12.0 12.6 31.4 22.4
0.15 22.2 23.1 37.5 24.1 73.3 63.6 18.3 16.8 19.4 18.5 47.3 35.2
0.20 36.2 35.4 56.1 36.5 89.9 84.4 26.4 23.9 28.6 27.7 62.7 49.7

1000 0.10 18.7 19.2 36.8 19.5 79.6 74.5 14.9 14.2 20.7 16.9 57.4 50.1
0.15 37.0 36.1 62.3 38.8 97.0 95.7 28.1 25.6 35.5 32.3 79.8 73.5
0.20 56.9 57.1 81.9 58.3 99.7 99.6 41.0 40.7 51.6 50.3 91.1 86.3

2500 0.10 28.4 25.5 54.8 25.8 99.6 99.5 23.1 20.3 31.8 21.6 94.3 92.5
0.15 54.7 55.1 81.4 65.9 100 100 39.8 40.6 54.8 62.1 99.4 99.2
0.20 79.8 79.5 95.2 88.0 100 100 62.6 60.5 72.8 85.1 100 100
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Table 7: Estimated percentage of rejection of the null hypothesis of belonging to
the Normal family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2

and Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 4.8 4.4 4.5 4.9 5.0 6.2 7.1 6.8 7.0 4.1 5.4 6.7
0.15 7.7 7.5 7.7 4.3 3.9 6.0 10.5 9.6 9.6 2.9 5.1 6.9
0.20 12.3 12.2 11.4 4.3 4.2 5.9 13.9 13.5 13.5 2.4 5.1 6.9

250 0.10 10.5 9.6 9.5 5.0 4.2 6.8 10.3 9.1 9.7 2.8 5.4 8.3
0.15 21.7 21.4 19.6 4.5 4.5 7.3 15.5 15.6 14.6 2.0 5.5 8.2
0.20 36.6 37.4 32.9 3.2 3.9 6.5 21.5 21.4 19.7 1.2 5.3 8.0

500 0.10 19.7 20.5 16.9 4.8 5.5 8.3 14.1 13.7 12.8 2.1 6.6 9.6
0.15 41.3 42.3 36.7 3.5 5.8 8.7 22.6 22.8 19.8 0.8 7.2 9.5
0.20 65.1 65.4 58.9 2.6 5.3 7.2 32.9 32.8 28.8 1.6 6.6 8.3

1000 0.10 33.7 31.8 28.2 4.6 8.0 10.5 18.6 16.8 15.9 1.1 9.5 11.7
0.15 64.3 64.2 59.1 2.7 10.4 12.7 31.3 30.2 27.7 1.7 11.5 12.1
0.20 87.8 88.2 84.2 2.6 9.8 11.1 46.0 48.4 43.4 10.2 10.9 10.3

2500 0.10 43.2 45.1 41.9 3.0 15.3 17.8 18.1 19.7 18.7 1.6 18.4 18.4
0.15 83.1 85.1 82.1 3.3 21.9 23.2 37.9 41.6 37.8 27.0 21.8 18.3
0.20 98.6 98.5 98.0 11.2 25.8 24.9 61.9 62.2 59.0 67.0 26.7 18.4

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 4.1 4.0 4.3 5.2 11.7 7.4 4.5 4.1 4.1 4.9 6.0 5.1
0.15 4.5 4.4 5.1 5.9 15.6 10.0 4.8 4.7 4.4 4.9 5.6 4.7
0.20 5.9 6.1 7.3 7.3 20.9 14.7 4.7 4.7 5.0 5.3 6.3 5.4

250 0.10 5.0 5.0 5.8 6.1 15.9 11.2 4.6 4.1 4.2 5.2 5.2 5.2
0.15 6.3 6.7 9.7 7.2 25.6 19.6 4.8 4.9 5.1 5.1 5.3 5.3
0.20 7.3 7.8 12.7 9.4 35.3 30.2 4.5 4.8 4.6 4.9 5.0 5.4

500 0.10 6.1 6.6 8.1 6.8 22.7 18.2 5.0 5.0 4.5 4.9 4.7 5.4
0.15 7.1 8.2 13.2 8.8 36.9 31.5 5.2 5.4 4.7 5.1 5.2 5.6
0.20 9.5 11.1 20.1 11.1 55.2 51.2 4.9 4.9 4.6 5.2 4.9 4.9

1000 0.10 7.5 7.1 11.2 8.4 34.9 30.0 6.2 5.2 5.0 5.5 5.3 5.1
0.15 8.7 9.5 19.5 11.0 59.8 55.3 5.5 5.1 4.9 5.4 4.8 4.6
0.20 13.2 14.7 31.5 13.8 82.2 80.4 5.0 5.1 5.4 4.5 5.1 5.1

2500 0.10 6.4 7.2 14.1 9.8 63.7 60.7 4.3 5.0 4.9 4.5 4.8 4.8
0.15 10.0 11.7 26.7 14.5 91.7 90.5 4.4 5.2 5.1 5.4 4.8 4.7
0.20 17.7 18.1 45.1 17.0 99.3 99.4 5.2 5.1 5.3 5.0 5.3 5.7
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family of copulas under H0. One may have expected, however, that the powers would start
to decrease at the middle point, i.e. when δ =

√
500/2 ≈ 11.2. The observed asymmetry

in all four cases is probably an indication that the goodness-of-fit tests are better to detect
discrepancies from H0 when the data come from a copula with a high level of dependence.
The fact that θ′ > θ probably explained that the middle point is skewed to the right.

As expected, the differences in power between Vρ
n,N , Vτ

n,N and VPL
n,N are less apparent in

small sample sizes than it was asymptotically (see Figure 2 to compare). Nevertheless, the
conclusions here are very similar to the asymptotic situation, except that the performance
of Vρ

n,N is not as bad as for n→ ∞ under Clayton and Gumbel-Barnett mixtures. Briefly,
the choice of the estimator doesn’t seem to have a significant influence under Gumbel–
Barnett and Normal mixtures, while for Clayton mixtures, the pseudo-likelihood estimator
is not recommended. The latter is however the best choice under Frank mixtures.
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Figure 4: Power curves for the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N under (a) Clayton,

(b) Frank, (c) Gumbel–Barnett and (d) Normal mixtures with (τC , τd) = (0.4, 0.8),
n = 500 and N = 2500.

6.2. Power of the Cramér–von Mises statistics compared to the moment-based statistics

It was seen in subsection 6.1 that the test statistic Vρ
n,N was a good choice for small sample

sizes when testing the goodness-of-fit under the hypothesis of belonging to the Clayton
family. The ability to reject H0 in that case is almost as good for tests based on Sn2 and
Sn3, with a slight advantage to Sn2. The power of the latter even becomes larger than
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that of Vρ
n,N when n ≥ 500 and is often better than the best Cramér–von Mises statistic

in large samples, namely VPL
n,N . Note the poor performance of Sn1 in all cases considered.

When testing the hypothesis of belonging to the Frank family, Sn1 and Sn2 are bad
choices. However, Sn3 is sometimes comparable with the Cramér–von Mises statistics
when the sample size is large, especially under Gumbel–Barnett alternatives.

The null hypothesis of a Gumbel–Barnett family provides an example of a very powerful
moment-based statistic. Here, Sn2 is more powerful than the best Cramér–von Mises
statistic, namely Vρ

n,N under Clayton and VPL
n,N under Frank and Normal copulas. Another

example is given when testing the hypothesis of belonging to the Normal family against
Frank alternatives, where Sn2 and Sn3 are clearly the most powerful. The latter are
unfortunately inefficient to detect Clayton and Gumbel–Barnett dependence structures.

A final analysis have been made to compare the power of the tests under Qδn =
(1 − δn)Cθ + δnCθ′ . The results are to be found in Figure 5. Here, the ordering in the
power curves are often quite different to the ones encountered in Figure 3 in the asymptotic
situation. An explanation probably lies in the fact that the moment-based statistics are
especially good in very large samples, and the result is that the latter outclass the Cramér–
von Mises statistics when n → ∞. This domination is weaker in moderate sample sizes.
This is particularly evident under Clayton mixtures where the best Cramér–von Mises
statistic outperforms all moment-based statistics. Note here the very poor performance
of Sn1, in contrast to the extremely good performance of the same statistic when n→ ∞.
Under Frank mixtures the moment-based statistics perform very well even for moderate
sample sizes, where they outperform the best Cramér–von Mises statistic. Under Gumbel–
Barnett mixtures, Sn1 is clearly the best statistic while under Normal mixtures, Sn3 is the
best and Sn1 provides a very poor performance.
7. Discussion

In this paper, the local power curves of tests based on Cramér–von Mises distances of
the empirical copula goddness-of-fit process have been investigated and compared to
that of moment-based statistics involving Spearman’s rho, Kendall’s tau and the pseudo-
maximum likelihood estimator. Many discoveries have been made, in particular that the
estimation strategy can have a significant impact on the power of the Cramér–von Mises
statistics, and that some of the moment-based statistics provide very powerful tests under
many distributional scenarios. Also, it seems that the ability of the Cramér–von Mises
statistics to detect departures from H0 is better under fixed alternatives rather than under
mixtures, while an opposite conclusion can be expressed for the moment-based statistics.

In future works, these kind of investigations could also be accomplished for other
popular goodness-of-fit tests like those proposed by Scaillet (2006), Huard et al. (2006)
and Genest et al. (2006a). The latter authors based their tests on Kendall’s process
Kn(t) =

√
n{Kn(t) − Kθ̂n

(t)}, where Kθ(t) = P{Cθ(X,Y ) ≤ t}, with (X,Y ) ∼ Cθ, is
the bivariate probability integral transformation of Cθ and Kn is a fully nonparametric
estimator ofKθ. Suitable adaptations of the arguments to be found in Ghoudi & Rémillard
(1998) should enable to establish that Kn  K + δ(L̇0 − µK̇θ) under alternatives of
the type Qδn , where K is the weak limit of Kn under H0, Lδ is the probability integral
transformation of Qδ and µ is the drift term associated to the limit of Θn =

√
n(θ̂n − θ)

identified in Proposition 1.
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Figure 5: Power of the tests based on Vn,N , Sn1, Sn2, Sn3 and Sn4 when n = 500
under (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal mixtures with
τC = 0.4 and τD = 0.8

It could also be interesting to exploit the idea of moment-based statistics to test the
fit to families of multivariate copulas. For example, possible estimators of a univariate
parameter θ are those based on inversions of the multivariate extensions of Spearman’s
rho described by Schmid & Schmidt (2007), namely

ρn,⋆ = ξ(d)

{

2d

∫

(0,1)d

Cn(u)du− 1

}

and ρn,⋆⋆ = ξ(d)

{

2d

∫

(0,1)d

C̄n(u)du− 1

}

,

where ξ(d) = (d+ 1)(2d − d− 1)−1, Cn is the multivariate empirical copula and C̄n is the
survival version of Cn. Then, the local behavior of the goodness-of-fit statistic

Sn =
√
n

{

ρ−1
⋆ (ρn,⋆) − ρ−1

⋆⋆ (ρn,⋆⋆)
}

,

where ρ⋆ and ρ⋆⋆ are the population versions of ρn,⋆ and ρn,⋆⋆, will be a consequence of
that of Cn,θ that can be deduced from the proof of Proposition 2.

It may be noted that the form of the alternative hypothesis (1) is not the only one
under which asymptotic power curves could be derived. Another possibility is given by

Q⋆
δ(x, y) = ψ−1

δ [C {ψδ(x), ψδ(y)}] ,
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where ψδ must satisfy some conditions to ensure that Q⋆
δ is a copula and the perturbation

function ψδ is chosen such that ψ0(t) = t. Then, by arguments similar to that in the proof
of Proposition 2, it would be possible to establish that Cn,θ  Cθ + δQ̇⋆

0, where

Q̇⋆
0(x, y) = C10(x, y)ψ̇0(x) + C01(x, y)ψ̇0(y) − ψ̇0 {C(x, y)} .
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Basel.

Genest, C., Ghoudi, K. & Rivest, L.-P. (1995). A semiparametric estimation procedure of depen-
dence parameters in multivariate families of distributions. Biometrika 82, 543–552.

Genest, C., Quessy, J.-F. & Rémillard, B. (2006a). Goodness-of-fit procedures for copula models
based on the probability integral transformation. Scand. J. Statist. 33, 337–366.

Genest, C., Quessy, J.-F. & Rémillard, B. (2006b). On the joint asymptotic behavior of two
rank-based estimators of the association parameter in the gamma frailty model. Statist.
Probab. Lett. 76, 10–18.

Genest, C., Quessy, J.-F. & Rémillard, B. (2006c). Local efficiency of a Cramér–von Mises test
of independence. J. Multivariate Anal. 97, 274–294.

Genest, C., Quessy, J.-F. & Rémillard, B. (2007). Asymptotic local efficiency of Cramér–von
Mises tests for multivariate independence. Ann. Statist. 35, 166–191.

Genest, C. & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing
in semiparametric models. Ann. Henri Poincaré 44, in press.
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Appendix A : Proofs

A.1. Proof of Proposition 1. Assumption (8) enables to deduce, from Lemma 3.10.11 of
Van der Vaart & Wellner (1996), that the log-likelihood ratio of Qδn with respect to Q0

has the asymptotic representation

Ln =
δ√
n

n
∑

i=1

{

d(Xi, Yi) − cθ(Xi, Yi)

cθ(Xi, Yi)

}

− δ2

2n

n
∑

i=1

{

d(Xi, Yi) − cθ(Xi, Yi)

cθ(Xi, Yi)

}2

+ oP(1).

The proofs for (i) and (ii) are achieved in separate steps.
(i) From the asymptotic representation (9), it follows that

Θn,Λ = Θ′
n,Λ +

1

n

n
∑

i=1

ΛCθ ,10(Xi, Yi)βn1(Xi) +
1

n

n
∑

i=1

ΛCθ,01(Xi, Yi)βn2(yi) + oP(1),
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where βn1(x) =
√
n{Fn(x)−x} and βn2(y) =

√
n{Gn(y)− y}. From Slutsky’s lemma, the

bivariate central limit theorem and arguments that one can find in Ghoudi & Rémillard
(1998), the vector (Θn,Λ, Ln) converges to a bivariate normal distribution with mean vector
and covariance matrix

µ =

(

0,
−δ2σ2(L)

2

)

and Σ =

(

σ2
Λ(Cθ) δµΛ(Cθ,D)

δµΛ(Cθ,D) δ2σ2
Λ(Qδ)

)

,

where σ2(L) = varCθ
{d(X,Y )/cθ(X,Y )}. One may then conclude, in view of Lecam’s

third lemma, that Θn,Λ is asymptotically normal with mean δµΛ(Cθ,D) and variance
σ2

Λ(Cθ) under the contiguous sequence (Qδn)n≥1.
(ii) From Hájek’s projection method (Hájek & Sidák, 1967), one deduces the large-sample
representation

Θn,τ =
4

τ ′Cθ
(θ)

1√
n

n
∑

i=1

{

2Cθ(Xi, Yi) −Xi − Yi +
1 − τCθ

(θ)

2

}

+ oP(1).

Hence, the vector (Θn, Ln) converges to a bivariate normal distribution with mean vector
and covariance matrix

µ =

(

0,
−δ2σ2(L)

2

)

and Σ =

(

σ2
τ δµτ (θ)

δµτ (θ) δ2σ2
τ (Qδ)

)

,

from which it follows that Θn,τ is asymptotically N (δµτ (θ), σ2
τ ) under (Qδn)n≥1.

A.2. Proof of Proposition 2. Let (X
(n)
1 , Y

(n)
1 ), . . . , (X

(n)
n , Y

(n)
n ) be a random sample from

Qδn . Write C(n)
n = C(n)

n,θ − B(n)
n , where C(n)

n,θ =
√
n(C

(n)
n − Cθ) and B(n)

n =
√
n(C

θ̂
(n)
n

− Cθ).

Here, θ̂
(n)
n is the estimator based on the sample from Qδn and

C(n)
n (x, y) = H(n)

n

{

(

F (n)
n

)−1
(x),

(

G(n)
n

)−1
(y)

}

,

where

H(n)
n (s, t) =

1

n

n
∑

i=1

1
(

X
(n)
i ≤ s, Y

(n)
i ≤ t

)

,

F
(n)
n (s) = H

(n)
n (s, 1) and G

(n)
n (t) = H

(n)
n (1, t). From van der Vaart & Wellner (1996),

condition (8) implies that IH
(n)
n (s, t) =

√
n(H

(n)
n − Cθ) IH + δ(D − Cθ). In particular,

β
(n)
1,n(x) =

√
n{F (n)

n (x) − x} = IH(n)
n (x, 1) IH(x, 1)

and
β

(n)
2,n(y) =

√
n{G(n)

n (y) − y} = IH(n)
n (1, y) IH(1, y)

since D(x, 1) − Cθ(x, 1) = D(1, y) − Cθ(1, y) = 0. From Chapter 3 in Shorack & Wellner
(1986), both

sup
0≤x≤1

∣

∣

∣
F (n)

n (x) − x
∣

∣

∣
= sup

0≤x≤1

∣

∣

∣

∣

(

F (n)
n

)−1
(x) − x

∣

∣

∣

∣
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and

sup
0≤y≤1

∣

∣

∣
G(n)

n (y) − y
∣

∣

∣
= sup

0≤y≤1

∣

∣

∣

∣

(

G(n)
n

)−1
(y) − y

∣

∣

∣

∣

converge in probability to zero, so that

√
n

{

(

F (n)
n

)−1
− I

}

 −IH(·, 1) and
√
n

{

(

G(n)
n

)−1
− I

}

 −IH(1, ·).

Hence, since one can write

C(n)
n,θ (x, y) = IH(n)

n

{

(

F (n)
n

)−1
(x),

(

G(n)
n

)−1
(y)

}

+
√
n

{

Cθ

(

(

F (n)
n

)−1
(x),

(

G(n)
n

)−1
(y)

)

− Cθ(x, y)

}

= IH(n)
n

{

(

F (n)
n

)−1
(x),

(

G(n)
n

)−1
(y)

}

+ Cθ,10(x, y)
√
n{(F (n)

n )−1(x) − x}

+ Cθ,01(x, y)
√
n{(G(n)

n )−1(y) − y} + oP(1),

one deduces that C(n)
n,θ converges weakly to Cθ + δ(D−Cθ), where Cθ = IH −Cθ,10IH(·, 1)−

Cθ,01IH(1, ·) is the limit identified, e.g. by Gänssler & Stute (1987) and Tsukahara (2005)
under the null hypothesis. The second part of Assumption A2 and the mean-value theorem

enable to establish that B(n)
n converges to Θ̃Ċθ = ΘĊθ + µ(Cθ,D)Ċθ, while the joint

consistency of (C(n)
n,θ ,B

(n)
n ) to (Cθ+δ(D−Cθ),ΘĊθ+µ(Cθ,D)Ċθ) rises from Assumption A1.

Appendix B : Computation of the drift terms

In the case of Clayton, Frank and Gumbel–Barnett copulas, the value of Spearman’s
rho cannot be expressed explicitly in terms of the dependence parameter, and hence the
population value of formula (5) must be estimated through numerical methods. Such is
also the case for

ρ′Cθ
(θ) = 12

∫ 1

0

∫ 1

0
Ċθ(x, y)dxdy, ED {Cθ(X,Y )} =

∫ 1

0

∫ 1

0
Cθ(x, y)d(x, y)dxdy,

βCθ
=

∫ 1

0

∫ 1

0

{ċθ(x, y)}2

cθ(x, y)
dxdy and ED

{

ℓ′Cθ
(X,Y )

}

=

∫ 1

0

∫ 1

0

ċθ(x, y)

cθ(x, y)
d(x, y)dxdy,

where cθ(x, y) = ∂2Cθ(x, y)/∂x∂y, ċθ(x, y) = ∂cθ(x, y)/∂θ and Ċθ(x, y) = ∂Cθ(x, y)/∂θ.
Note that for Archimedean copulas, i.e. dependence models of the form Cθ(x, y) =
φ−1

θ {φθ(x) + φθ(y)}, one can show that

Ċθ(x, y) =
φ̇θ(x) + φ̇θ(y) − φ̇θ {C(x, y)}

φ′θ {Cθ(x, y)}
,

where φ̇θ(x) = ∂φθ(x)/∂θ and φ′θ(x) = ∂φθ(x)/∂x. The Clayton, Frank and Gumbel–
Barnett copulas are member of this important class of models.
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B.1. The Clayton family. The copulas in this class and their associated densities are

CCL
θ (x, y) =

(

x−θ + y−θ − 1
)−1/θ

and cCL
θ (x, y) = (θ+1) (xy)−θ−1

(

x−θ + y−θ − 1
)−1/θ−2

,

(13)
where θ > −1. The associated value of Kendall’s tau is τCCL

θ
(θ) = θ/(θ + 2), from which

one deduces easily that ECθ
(Cθ) = (θ + 1)/2 and τ ′

CCL
θ

(θ) = 2/(θ + 2)2. Further,

Ċθ(x, y) =
Cθ(x, y)

θ

{

x−θ log x+ y−θ log y

x−θ + y−θ − 1
− logCθ(x, y)

}

.

B.2. The Frank family. Frank’s copula is given by

CF
θ (x, y) = −1

θ
ln

{

1 −
(

1 − e−θx
) (

1 − e−θy
)

1 − e−θ

}

, (14)

where θ ∈ R \ {0}. As reported in Frees & Valdez (1999), Spearman’s rho and Kendall’s
tau in this family are expressed by

ρCF
θ
(θ) = 1 +

12

θ2

∫ θ

0

t(2t− θ)

et − 1
dt and τCF

θ
(θ) = 1 − 4

θ
+

4

θ2

∫ θ

0

t

et − 1
dt.

Hence, one deduces

ρ′
CF

θ
(θ) =

12

θ (eθ − 1)
− 24

θ4

∫ θ

0

t(3t− θ)

et − 1
dt

and

τ ′
CF

θ
(θ) =

4

θ2
+

4

θ (eθ − 1)
− 8

θ3

∫ θ

0

t

et − 1
dt.

The other necessary computations, however, must be accomplished numerically.

B.3. The Gumbel–Barnett family. The analytical form of this extreme-value copula (see
Ghoudi et al., 1998) is

CGB
θ (x, y) = exp

{

−
(

|log x|1/(1−θ) + |log y|1/(1−θ)
)1−θ

}

, (15)

where 0 ≤ θ ≤ 1. Computations of the drift terms in this class of models are difficult
and must be done numerically. The only explicit expressions are for Kendall’s tau and its
derivative, namely τCGB

θ
(θ) = θ and τ ′

CGB
θ

(θ) = 1.

B.4. The Normal family. The Normal copula, which arises as the dependence function
associated to the classical normal model, is defined by

CN
θ (x, y) =

∫ Φ−1(x)

−∞

∫ Φ−1(y)

−∞
hθ(s, t)dsdt, (16)
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where

hθ(s, t) =

(

1 − θ2
)−1/2

2π
exp

{

− 1

2(1 − θ2)

(

s2 + t2 − 2θst
)

}

is the standard bivariate normal density with correlation coefficient θ. Despite the implicit
form of CN

θ involving the percentile function of a standard univariate normal distribution,
there exists explicit relationships between the dependence parameter θ and Kendall and
Spearman measures of association. Explicitly,

τCθ
(θ) =

2

π
sin−1(θ) and ρCθ

(θ) =
6

π
sin−1

(

θ

2

)

,

from which it follows easily that

ECθ
(Cθ) =

2 sin−1(θ) + π

4π
, τ ′Cθ

(θ) =
2

π
√

1 − θ2
and ρ′Cθ

(θ) =
6

π
√

4 − θ2
.

Hence, if D ≡ CN
θD

, i.e. if one considers a mixture of Normal copulas, then

µρ(Cθ,D) =
sin−1(θD/2) − sin−1(θ/2)√

4 − θ2
.

Also, the density associated to CN
θ is

cNθ (x, y) = hθ

{

Φ−1(x),Φ−1(y)
} (

Φ−1
)′

(x)
(

Φ−1
)′

(y),

and it is possible to establish that

ℓ′
CN

θ
(x, y) =

ċNθ (x, y)

cNθ (x, y)
=
θ(1 − θ2) − θ(s2 + t2) + (θ2 + 1)st

(1 − θ2)2

∣

∣

∣

∣

s=Φ−1(x), t=Φ−1(y)

.

This enables to compute

ED

{

ℓ′
CN

θ
(X,Y )

}

=

∫ 1

0

∫ 1

0
ℓ′
CN

θ
(x, y)cNθD

(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

{

θ(1 − θ2) − θ(s2 + t2) + (θ2 + 1)st

(1 − θ2)2

}

hθD
(s, t)dsdt

= EθD

{

θ(1 − θ2) − θ(S2 + T 2) + (θ2 + 1)ST

(1 − θ2)2

}

,

where (S, T ) follows a bivariate normal distribution with means 0, variances 1 and corre-
lation coefficient θD. Here, EθD

denotes expectation with respect to hθD
. Thus, noting

that EθD
(S2) = EθD

(T 2) = 1 and EθD
(ST ) = θD, straightforward computations yield

ED

{

ℓ′
CN

θ
(X,Y )

}

=
(θ2 + 1)(θD − θ)

(1 − θ2)2
.

Long but similar computations enable to obtain βCθ
= θ2 + 1 and hence

µPL(Cθ,D) =
θD − θ

(1 − θ2)2
.
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