
Models for construction of multivariate dependence:
A comparison study

Daniel Berg

University of Oslo & The Norwegian Computing Center.
E-mail: daniel@danielberg.no

Kjersti Aas

The Norwegian Computing Center.
E-mail: Kjersti.Aas@nr.no
(Address for correspondence)

[Revised October 19th 2007]

Abstract. We review models for construction of higher-dimensional dependence that have arisen recent
years. A multivariate data set, which exhibit complex patterns of dependence, particularly in the tails, can
be modelled using a cascade of lower-dimensional copulae. We examine two such models that differ in their
construction of the dependency structure, namely the nested Archimedean constructions and the pair-copula
constructions (also referred to as vines). The constructions are compared, and estimation- and simulation
techniques are examined. The fit of the two constructions is tested on two different four-dimensional data
sets; precipitation values and equity returns, using state of the art copula goodness-of-fit procedures. The
nested Archimedean construction is strongly rejected for both our data sets, while the pair-copula construction
provides a much better fit. Through VaR calculations, we show that the latter does not overfit data, but works
very well even out-of-sample.

Keywords: Nested Archimedean copulas, Pair-copula decompositions, Equity returns, Precipitation values,
Goodness-of-fit, Out-of-sample validation

1. Introduction

A copula is a multivariate distribution function with standard uniform marginal distributions. While the
literature on copulae is substantial, most of the research is still limited to the bivariate case. Building
higher-dimensional copulae is a natural next step, however, this is not an easy task. Apart from the mul-
tivariate Gaussian and Student copulae, the set of higher-dimensional copulae proposed in the literature
is rather limited.

The Archimedean copula family (see e.g. Joe (1997) for a review) is a class that has attracted par-
ticular interest due to numerous properties which make them simple to analyse. The most common
multivariate extension, the exchangeable multivariate Archimedean copula (EAC), is extremely restric-
tive, allowing the specification of only one generator, regardless of dimension. There have been some
attempts at constructing more flexible multivariate Archimedean copula extensions, see e.g. Joe (1997);
Nelsen (1999); Embrechts et al. (2003); Whelan (2004); Morillas (2005); Savu and Trede (2006). In this
paper we discuss one group of such extensions, the nested Archimedean constructions (NACs). For the
d-dimensional case, all NACs allow for the modelling of up to d − 1 bivariate Archimedean copulae.

For a d-dimensional problem there are in general d(d − 1)/2 parings of variables. Hence, while the
NACs constitute a huge improvement compared to the EAC, they are still not rich enough to model all
possible mutual dependencies amongst the d variates. An even more flexible structure, here denoted the
pair-copula construction (PCC) allows for the free specification of d(d − 1)/2 copulae. This structure
was originally proposed by Joe (1996), and later discussed in detail by Bedford and Cooke (2001, 2002),
Kurowicka and Cooke (2006) (simulation) and Aas et al. (2007) (inference). Similar to the NACs, the
PCC is hierarchical in nature. The modelling scheme is based on a decomposition of a multivariate density
into a cascade of bivariate copulae. In contrast to the NACs, the PCC is not restricted to Archimedean
copulae. The bivariate copulae may be from any family and several families may well be mixed in one
PCC.

This paper has several contributions. In Section 2 we compare the two ways of constructing higher
dimensional dependency structures, the NACs and the PCCs. We examine properties and estimation- and
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simulation techniques, focusing on the relative strengths and weaknesses of the different constructions.
In Section 3 we apply the NAC and the PCC to two four-dimensional data sets; precipitation values and
equity returns. We examine the goodness-of-fit and validate the PCC out-of-sample with respect to one
day value at risk (VaR) for the equity portfolio. Finally, Section 4 provides some summarizing comments
and conclusions.

2. Constructions of higher dimensional dependence

2.1. The nested Archimedean constructions (NACs)
The most common multivariate Archimedean copula, the exchangeable Archimedean copula (EAC), is
extremely restrictive, allowing the specification of only one generator, regardless of dimension. Hence,
all k-dimensional marginal distributions (k < d) are identical. For several applications, one would like
to have multivariate copulae which allows for more flexibility. In this section, we review one group of
such extensions, the nested Archimedean constructions (NACs). We first review two simple special cases,
the FNAC and the PNAC, in Sections 2.1.2 and 2.1.3, and then we turn to the general case in Section
2.1.4. However, before reviewing NACs, we give a short description of the EAC in Section 2.1.1, since
this structure serves as a baseline.

2.1.1. The exchangeable multivariate Archimedean copula (EAC)
The most common way of defining a multivariate Archimedean copula is the EAC, defined as

C(u1, u2, . . . , ud) = ϕ−1 {ϕ(u1) + . . . + ϕ(ud)} , (1)

where the function ϕ is a decreasing function known as the generator of the copula and φ−1 denotes its
inverse (see e.g. Nelsen (1999)). Here, we assume that the generator has only one parameter, θ. There
are however cases in which the generator have more parameters, see e.g. Joe (1997). For C(u1, u2, . . . , ud)
to be a valid d-dimensional Archimedean copula, φ−1 should have an analytical property known as d-
monotonicity. Se McNeil and Neslehova (2007) for details. One usually also assumes that φ(0) = ∞,
i.e. that the Archimedean copula is strict. Consider for example the popular Gumbel (Gumbel, 1960)
and Clayton (Clayton, 1978) copulae. The generator functions for these two copulae are given by ϕ(t) =
(− log(t))θ and ϕ(t) = (t−θ − 1)/θ, respectively.

2.1.2. The fully nested Archimedean construction (FNAC)
A simple generalization of (1) can be found in Joe (1997) and is also discussed in Embrechts et al. (2003),
Whelan (2004), Savu and Trede (2006) and McNeil (2007). The structure, which is shown in Figure 1
for the four-dimensional case, is quite simple, but notationally cumbersome. As seen from the figure, one
simply adds a dimension step by step. The nodes u1 and u2 are coupled through copula C11, node u3

is coupled with C11(u1, u2) through copula C21, and finally node u4 is coupled with C21(u3, C11(u1, u2))
through copula C31. Hence, the copula for the 4-dimensional case requires three bivariate copulae C11,
C21, and C31, with corresponding generators ϕ11, ϕ21, and ϕ31:

C(u1, u2, u3, u4) = C31(u4, C21(u3, C11(u1, u2)))

= ϕ−1
31

{

ϕ31(u4) + ϕ31(ϕ
−1
21 {ϕ21(u3) + ϕ21(ϕ

−1
11 {ϕ11(u1) + ϕ11(u2)})})

}

.

For the d-dimensional case, the corresponding expression becomes

C(u1, . . . , ud) = ϕ−1
d−1,1{ϕd−1,1(ud) + ϕd−1,1 ◦ ϕ−1

d−2,1{ϕd−2,1(ud−1) + ϕd−2,1 (2)

◦ . . . ◦ ϕ−1
11 {ϕ11(u1) + ϕ11(u2)}}}.

In this structure, which Whelan (2004) refers to as fully nested, all bivariate margins are themselves
Archimedean copulae. It allows for the free specification of d−1 copulae and corresponding distributional
parameters, while the remaining (d − 1)(d − 2)/2 copulae and parameters are implicitly given through
the construction. More specifically, in Figure 1, the two pairs (u1, u3) and (u2, u3) both have copula C21

with dependence parameter θ21. Moreover, the three pairs (u1, u4), (u2, u4) and (u3, u4) all have copula
C31 with dependence parameter θ31. Hence, when adding variable k to the structure, we specify the
relationships between k pairs of variables.
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The FNAC is a construction of partial exchangeability and there are some technical conditions that
need to be satisfied for (2) to be a proper d-dimensional copula. The consequence of these conditions for
the FNAC is that the degree of dependence, as expressed by the copula parameter, must decrease with
the level of nesting, i.e. θ11 ≥ θ21 ≥ . . . ≥ θd−1,1, in order for the resulting d-dimensional distribution to
be a proper copula.

u2 u3u1

C21

C31

u4

C11

Figure 1. Fully nested Archimedean construction.

2.1.3. The partially nested Archimedean construction (PNAC)
An alternative multivariate extension is the PNAC. This structure was originally proposed by Joe (1997)
and is also discussed in Whelan (2004), McNeil et al. (2006) (where it is denoted partially exchangeable)
and McNeil (2007).

The lowest dimension for which there is a distinct structure of this class is four, when we have the
following copula:

C(u1, u2, u3, u4) = C21(C11(u1, u2), C21(u3, u4)) (3)

= ϕ−1
21 {ϕ21(ϕ

−1
11 {ϕ11(u1) + ϕ11(u2)}) + ϕ21(ϕ

−1
12 {ϕ12(u3) + ϕ12(u4)})}.

Figure 2 illustrates this structure graphically. Again the construction is notationally cumbersome al-
though the logic is straightforward. We first couple the two pairs (u1, u2) and (u3, u4) with copulae C11

and C12, having generator functions ϕ11 and ϕ12, respectively. We then couple these two copulae using a
third copula C21. The resulting copula is exchangeable between u1 and u2 and also between u3 and u4.
Hence, it can be understood as a composite of the EAC and the FNAC.

For the PNAC, as for the FNAC, d−1 copulae and corresponding distributional parameters are freely
specified, while the remaining copulae and parameters are implicitly given through the construction.
More specifically, in Figure 2, the four pairs (u1, u3), (u1, u4) (u2, u3) and (u2, u4) will all have copula
C21, with dependence parameter θ21. Similar constraints on the parameters are required for the PNACs
as for the FNACs.

2.1.4. The general case
The generally nested Arcimedean construction was originally treated by Joe (1997, Chapter 4.2), and is
also mentioned in Whelan (2004). However, Savu and Trede (2006) were the first to provide the notation
for arbitrary nesting, and to show how to calculate the d-dimensional density in general.

Savu and Trede (2006) use the notation hierarchical Archimedean copula for the generally nested case.
The idea is to build a hierarchy of Archimedean copulas. Assume that there are L levels. At each level
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C11

C21

C12

u1 u2 u3 u4

Figure 2. Partially nested Archimedean construction.

l, there are nl distinct objects (an object is either a copula or a variable). At level l = 1 the variables
u1, . . . , ud are grouped into n1 exchangeable multivariate Archimedean copulae. These copulae are in
turn coupled into n2 copulae at level l = 2, and so on.

Figure 3 shows an example. The 9-dimensional copula in the figure is given by

C(u1, . . . u9) = C41(C31(C21(C11(u1, u2), u3, u4), u5, u6), C22(u7, C12(u8, u9))).

At level one, there are two copulae. Both are two-dimensional EACs. The first, C11 joins the variables
u1 and u2, while the other, C12, joins u8 and u9. At the second level, there are also two copulae. The
first, C21, joins the copula C11 with the two variables u3 and u4, while the other, C22 joins C12 and u7.
At the third level there is only one copula, C31, joining C21, u5 and u6. Finally, at level four, the copula
C41 joins the two copulae C31 and C22.

There are a number of conditions to ensure that the resulting structure is a valid Archimedean copula
(Savu and Trede, 2006). The number of copulas must decrease at each level, the top level may only
contain one copula and all the inverse generator functions must be completely monotone. Further, we
must have that the degree of dependence must decrease with the level of nesting. For example in Figure
3 we must have that θ11 ≥ θ21 ≥ θ31 ≥ θ41 and θ12 ≥ θ22 ≥ θ41. If mixing copula generators belonging to
different Archimedean families, even this requirement might not be sufficient. Two Archimedean copulas
from families 1 and 2 can only be nested if the derivative of the product ϕ1 ◦ϕ−1

2 is completely monotonic
(McNeil, 2007). The issue of which copula families that can be mixed has been considered in some detail
in Joe (1997), but it is still not fully explored. Hence, here we only work with structures for which all
the generators are from the same family.

Unfortunately, it is not possible to obtain a simple expression for the density of a hierarchical
Archimedean copula. Due to the complex structure of this construction, one has to use a recursive
approach. One differentiates the d-dimensional top level copula with respect to its arguments using the
chain rule. See Savu and Trede (2006) for more details.

2.1.5. Parameter estimation

For the NACs, as for the EAC, the parameters may be estimated by maximum likelihood. However, not
even for the EAC it is straightforward to derive the density in general for all parametric families. For
instance, for the Gumbel family, one has to resort to a computer algebra system, such as Mathematica,
or the function D in R, to derive the d-dimensional density.

Savu and Trede (2006) give the density expression for a general NAC. The density is obtained using a
recursive approach. Hence, the number of computational steps needed to evaluate the density increases
rapidly with the complexity of the copula, and parameter estimation becomes very time consuming in
high dimensions.
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u1 u2 u3 u4 u5 u6 u7 u9u8
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C21

C11 C12
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Figure 3. Hierarchically nested Archimedean construction.

2.1.6. Simulation
Simulating from the higher-dimensional constructions is a very important and central practical task.
Simulating from an EAC is usually rather simple, and several algorithms exist. A popular algorithm
utilizes the representation of the Archimedean copula generator using Laplace transforms (see e.g. Frees
and Valdez (1998)). McNeil (2007) shows how to use the Laplace-transform method also for the NACs,
in the case where all generators are taken from either the Gumbel- or the Clayton family. A problem with
the Laplace transform method is that it is limited to copulae for which we can find a distribution that
equals the Laplace transform of the inverse generator function, and from which we can easily sample.
For some copulae, e.g. Frank, there is, as of now, no alternative to the conditional inversion method
described in e.g. Embrechts et al. (2003). This procedure involves the d−1 first derivatives of the copula
function and, in most cases, numerical inversion. The higher-order derivatives are usually extremely
complex expressions (see e.g. Savu and Trede (2006)). Hence, simulation may become very inefficient for
high dimensions.

2.2. The pair-copula constructions (PCC)
While the NACs constitute a large improvement compared to the EAC, they still only allow for the
modelling of up to d−1 copulae. An even more flexible structure, the PCC, allows for the free specification
of d(d−1)/2 copulae. This structure was orginally proposed by Joe (1996), and it has later been discussed
in detail by Bedford and Cooke (2001, 2002), Kurowicka and Cooke (2006) (simulation) and Aas et al.
(2007) (inference). Similar to the NAC’s, the PCC’s are hierarchical in nature. The modelling scheme is
based on a decomposition of a multivariate density into d(d − 1)/2 bivariate copula densities, of which
the first d − 1 are unconditional, and the rest are conditional.

While the NACs are defined through their distribution functions, the PCCs are usually represented
in terms of the density. Two main types of PCCs have been proposed in the literature; canonical vines
and D-vines (Kurowicka and Cooke, 2004). Here, we concentrate on the D-vine representation, for which
the density is (Aas et al., 2007):

f(x1, . . . xd) =

d
∏

k=1

f(xk)

d−1
∏

j=1

d−j
∏

i=1

cj,i {F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)} . (4)

The conditional distribution functions are computed using (Joe, 1996)

F (x|v) =
∂ Cx,vj |v−j

{F (x|v−j).F (vj |v−j)}
∂F (vj |v−j)

, (5)
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where Cij|k is a bivariate copula distribution function. To use this construction to represent a dependency
structure through copulas, we assume that the univariate margins are uniform in [0,1]. One 4-dimensional
case of (4) is

c(u1, u2, u3, u4) = c11(u1, u2) · c12(u2, u3) · c13(u3, u4)

· c21(F (u1|u2), F (u3|u2)) · c22(F (u2|u3), F (u4|u3))

· c31(F (u1|u2, u3), F (u4|u2, u3)),

where F (u1|u2) = ∂ C11(u1, u2)/∂u2, F (u3|u2) = ∂ C12(u2, u3)/∂u2, F (u2|u3) = ∂ C12(u2, u3)/∂u3,
F (u4|u3) = ∂ C13(u3, u4)/∂u3, F (u1|u2, u3) = ∂ C21(F (u1|u2), F (u3|u2))/∂F (u3|u2) and F (u4|u2, u3) =
∂ C22(F (u4|u3), F (u2|u3))/∂F (u2|u3). Figure 2.2 illustrates this structure.

C13

u1

C12

C31

C22

C11

C21

u2 u3 u4

Figure 4. Pair-copula construction.

The copulae involved in (4) do not have to belong to the same family. In contrast to the NACs they
do not even have to belong to the same class. The resulting multivariate distribution will be valid even if
we choose, for each pair of variables, the parametric copula that best fits the data. As seen from (4) the
PCC consists of d(d − 1)/2 bivariate copulae of known parametric families, of which d − 1 are copulae
of pairs of the original variables, while the remaining (d − 1)(d − 2)/2 are copulae of pairs of variables
constructed using (5) recursively. This means that in contrast to the NACs, the unspecified bivariate
margins will belong to a known parametric family in general. However, it can be shown, that e.g. upper
(lower) tail dependence on the bivariate copulae at the lowest level is a sufficient condition for all bivariate
margins to have upper (lower) tail dependence†.

2.2.1. Parameter estimation
The parameters of the PCC may be estimated by maximum likelihood. In contrast to the NACs, the
density is explicitly given. However, also for this construction, a recursive approach is used (see Aas
et al. (2007, Algorithm 4)). Hence, the number of computational steps to evaluate the density increases
rapidly with the complexity of the copula, and parameter estimation becomes time consuming in high
dimensions.

2.2.2. Simulation
The simulation algorithm for a D-vine is straightforward and simple to implement, see Aas et al. (2007,
Algorithm 2). Like for the NACs, the conditional inversion method is used. However, to determine each

†Personal communication with Harry Joe.
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Table 1. Summary of construction properties for the EAC, NAC and PCC constructions.

Construction
Max no. of copulae Parameter Copula

freely specified constraints mixing

EAC 1 None Only one copula

NAC d− 1 Dependence must decrease May combine different Arch.
with level of nesting families but under complete

monotonicity restrictions

PCC d(d− 1)/2 None May combine any copula
families from any class

Table 2. Computational times in sec. for different constructions
and copulae, fitted to the equity data in Section 3.3.
Method Likelihood evaluation Estimation Simulation

Gumbel

NAC 0.32 34.39 0.02
PCC 0.04 5.09 7.56

Frank

NAC 0.12 5.34 64.83
PCC 0.02 1.22 5.82

of the conditional distribution functions involved, only the first partial derivative of a bivariate copula
needs to be computed (see Aas et al. (2007)). Hence, the simulation procedure for the PCC is in general
much simpler and faster than for the NACs.

2.3. Comparison
In this section we summarize the differences between the NACs and the PCCs with respect to ease of
interpretation, applicability and computational complexity.

First, the main advantage of the PCCs is the increased flexibility compared to the NACs. While the
NACs only allow for the free specification of d − 1 copulae, d(d − 1)/2 copulae may be specified in a
PCC. Next, for the NACs there are restrictions on which Archimedean copulae that can be mixed, while
the PCCs can be built using copulae from different families and classes. Finally, the NACs have another
even more important restriction in that the degree of dependence must decrease with the level of nesting.
When looking for appropriate data sets for the applications in Section 3, it turned out to be quite difficult
to find real-world data sets satisfying this restriction. Hence, this feature of the NACs might prevent
them from being extensively used in real-world applications. For the PCCs, on the other hand, one is
always guaranteed that all parameter combinations are valid. Table 1 summarizes these properties.

It is our opinion that another advantage of the PCCs is that they are represented in terms of the density
and hence easier to handle than the NACs that are defined through their distribution functions. The PCCs
are also in general more computationally efficient than the NACs. Table 2 shows computational times
(s) in R ‡ for likelihood evaluation, parameter estimation and simulation for different structures. The
parameter estimation is done for the data set described in Section 3.3, and the simulation is performed
using the parameters in Table 6 (based on 1000 samples). The values for NAC were computed using
density expressions found in Savu and Trede (2006). However, general expressions may also easily be
obtained symbolically using e.g. the function D in R. The estimation times in Table 2 are only indicative
and included as examples since they are very dependent on size and structure of the data set. It is more
appropriate to study the times needed to compute one evaluation of the likelihood given in the leftmost
column. As can be seen from the table, the PCC is superior to the NAC for likelihood evaluation in both
the Gumbel and the Frank case. Moreover, it is much faster for simulation in the Frank case, since one
in this case must use the general conditional inversion algorithm with numerical inversion for the NAC.
In the Gumbel case, however, one can perform much more efficient simulation from the NAC using the
algorithms given in McNeil (2007). Hence, in this case, the NAC is superior to the PCC.

The multivariate distribution defined through a NAC will always by definition be an Archimedean
copula (assuming that all requirements are satisfied), and all bivariate margins will belong to a known
parametric family. This is not the case for the PCCs, for which neither the multivariate distribution nor

‡The experiments were run on a Intel(R) Pentium(R) 4 CPU 2.80GHz PC.



8 D.Berg, K. Aas

the unspecified bivariate margins will belong to a known parametric family in general. However, we do
not view this as a problem, since both might easily be obtained by simulation.

Finally, it should be noted that for both structures, an important part of the full estimation problem
is how to select the ordering of the variables. For smaller dimensions (say 3 and 4), one may estimate the
parameters of all possible orderings and compare the resulting log-likelihoods. This is in practice infeasible
for higher dimensions, since the number of different orderings increases very rapidly with the dimension
of the data set. One may instead determine which bivariate relationships that are most important to
model correctly and let this determine which ordering to choose. Very recently, there has been some
attempts of formalising this procedure, both for the NACs (Okhrin et al., 2007) and for the PCCs (Min
and Czado, 2007).

3. Applications

The fit of the NAC and the PCC is assessed for two different four-dimensional data sets; precipitation
values and equity returns. Appropriate modelling of precipitation is of great importance to insurance
companies which are exposed to growth in damages to buildings caused by external water exposition.
Modelling precipitation and valuing related derivative contracts is also indeed a frontier in the field of
weather derivatives, see e.g. Musshoff et al. (2006). The dependencies within an equity portfolio can have
enormous impacts on e.g. capital allocation and the pricing of collateralized debt obligations. Before
these two applications are further treated, we describe the tests used for goodness-of-fit in our study.

3.1. Goodness-of-fit
To evaluate whether a copula or copula construction appropriately fit the data at hand, goodness-of-fit
testing is called upon. Lately, several procedures have been proposed, see e.g. Berg (2007) for an overview
and power comparison. These power comparisons show that no procedure is always the best. However,
the procedure that showed to have the overall best performance in the study referred to above, was one
based on the empirical copula Cn introduced by Deheuvels (1979),

Cn(u) =
1

n + 1

n
∑

j=1

1(Uj1 ≤ u1, . . . , Ujd ≤ ud), u = (u1, . . . , ud) ∈ (0, 1)d, (6)

where Uj = (Uj1, . . . , Ujd) are the U(0, 1)d pseudo-observations, defined as normalized ranks. This pro-

cedure is based on the process Cn =
√

n{Cn −C
θ̂n
} where θ̂n is some consistent estimator of θ. Basing a

goodness-of-fit procedure on Cn was originally proposed by Fermanian (2005), but there dismissed due to
poor statistical properties. However, it has later been shown that it has the necessary asymptotic prop-
erties to be a justified goodness-of-fit procedure (Quessy, 2005; Genest and Rémillard, 2005). Moreover,
Genest et al. (2007) and Berg (2007) have examined the power of Cn and concluded that it is a very
powerful procedure in most cases.

We use the Cramér-von Mises statistic, defined by:

Sn = n

∫

[0,1]d
{Cn(u) − Cθn

(u)}2
dCn(u) =

n
∑

j=1

{Cn(Uj) − Cθn
(Uj)}2

. (7)

Large values of Sn means a poor fit and leads to the rejection of the null hypothesis copula. In practice,
the limiting distribution of Sn depends on θ. Hence, approximate p-values for the test must be obtained
through a parametric bootstrap procedure. We adopt the procedure in Appendix A in Genest et al.
(2007), setting the bootstrap parameters m and N to 5000 and 1000, respectively. The validity of this
bootstrap procedure was established in Genest and Rémillard (2005).

It will be shown in Section 3.2 that for the precipitation data set, Sn leads to the rejection of all the
different NAC and PCC structures that are investigated. Hence, to be able to compare the two structures
for this data set, we also use another goodness-of-fit procedure based on the process Kn =

√
n{Kn−K

θ̂n
},

where

Kn(t) =
1

n + 1

n
∑

j=1

1(Cn(Uj) ≤ t),
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Figure 5. Daily precipitation (mm) for pairs of meteorological stations for the period 01.01.1990 to 31.12.2006,
zeros removed.

is the empirical distribution function of Cn(u). See Genest et al. (2006) for details. Also for this procedure
we use the Cramér-von Mises statistic, i.e.:

Tn =

∫

[0,1]d

{

Kn(u) − K
θ̂
(u)

}2
dKn(u) =

n
∑

j=1

{

Kn(Uj) − K
θ̂n

(Uj)
}2

, (8)

and parametric bootstrap to obtain the p-values.
For both procedures, we use a 5% significance level for all experiments in this section.

3.2. Application 1: Precipitation data
In this section we study daily precipitation data (mm) for the period 01.01.1990 to 31.12.2006 for 4
meteorological stations in Norway; Vestby, Ski, Nannestad and Hurdal, obtained from the Norwegian
Meteorological Institute. According to Musshoff et al. (2006), the stochastic process of daily precipitation
can be decomposed into a stochastic process of “rainfall”/”no rainfall”, and a distribution for the amount
of precipitation given that it rains. Here, we are only interested in the latter. Hence, before further
processing, we remove days with non-zero precipitation values for at least one station, resulting in 2065
observations for each variable. Figures 5-6 show the daily precipitation values and corresponding copulae
for pairs of meteorological stations. Since we are mainly interested in estimating the dependence structure
of the stations, the precipitation vectors are converted to uniform pseudo-observations before further
modelling. In light of recent results due to Chen and Fan (2006), the method of maximum pseudo-
likelihood is consistent even when time series models are fitted to the margins.

Based on visual inspection and preliminary goodness-of-fit tests for bivariate pairs (the copulae taken
into consideration were the Student, Clayton, survival Clayton, Gumbel and Frank copulae), we decided
to examine Gumbel and Frank NACs and Gumbel, Frank and Student PCCs for the precipitation data.

3.2.1. Hierarchically nested Archimedean construction
The most appropriate ordering of the variates in the decomposition is found by comparing Kendall’s tau
values for all bivariate pairs. These are shown in Table 3. They confirm the intuition that the degree of
dependence between the variables corresponds to the distances between the stations. Ski and Vestby are
closely located, and so is Hurdal and Nannestad, while the distance from Ski/Vestby to Hurdal/Nannestad
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Figure 6. Pseudo-observations corresponding to Figure 5.

Table 3. Estimated Kendall’s tau for pairs of
variables.

Location Ski Nannestad Hurdal

Vestby 0.79 0.49 0.47
Ski 0.56 0.53

Nannestad 0.71

is larger. Hence, we choose C11 and C12 to be the copulae of Vestby and Ski and Nannestad and Hurdal,
respectively, while C21 is the copula of the remaining pairs.

The two leftmost columns of Table 4 show the estimated parameter values, resulting log-likelihoods,
and estimated p-values for the Gumbel and Frank NACs, fitted to the precipitation data. We see that
both goodness-of-fit procedures strongly reject the two NAC constructions. Hence we conclude that the
NACs considered are not flexible enough to fit the precipitation data appropriately.

3.2.2. Pair-copula construction
Also for the PCCs, the variables are ordered such that the copulae fitted at level 1 in the decomposition
are those corresponding to the three largest Kendall’s tau values. Hence, C11 is the copula of Vestby and
Ski, C12 is the copula of Ski and Nannestad, and C13 is the copula of Ski and Hurdal. The parameters
of the PCC are estimated using Algorithm 4 in Aas et al. (2007). The three rightmost columns of Table
4 show the estimated parameter values, resulting log-likelihoods and p-values for the Gumbel, Frank
and Student PCCs. We see that, as for the NACs, all considered PCCs are strongly rejected by Sn.
Hence, from the Sn-results, it is not possible to determine which of the two constructions that best fit
the precipitation data and we therefore also used Tn. This procedure also rejects both NACs, but it fails
to reject the Gumbel and Student PCCs, with the Gumbel PCC seemingly the best. Hence, we conclude
that the Gumbel PCCs provides the best fit, but that there is a need for further research to find copula
types that better captures the properties of the precipitation data.

3.3. Application 2: Equity returns
In this section, we study an equity portfolio. The portfolio is comprised of four time series of daily log-
return data from the period 14.08.2003 to 29.12.2006 (852 observations for each firm). The data set was
downloaded from http://finance.yahoo.com. The firms are British Petroleum (BP), Exxon Mobile
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Table 4. Estimated parameters, log-likelihood and estimated p-values for
NACs and PCCs fitted to the precipitation data.

Parameter
NAC PCC

Gumbel Frank Gumbel Frank Student

θ11 \ ν11 4.32 16.69 4.34 16.78 0.93 \ 3.6
θ12 \ ν12 3.45 13.01 2.24 7.10 0.78 \ 6.7
θ13 \ ν13 - - 3.45 12.98 0.90 \ 5.5
θ21 \ ν21 1.97 5.96 1.01 0.08 0.01 \ 9.6
θ22 \ ν22 - - 1.02 0.61 0.09 \ 14.5
θ31 \ ν31 - - 1.03 0.27 0.04 \ 17.3

Log-likelihood 4741.05 4561.72 4842.25 4632.19 4643.38

p-value of Sn 0.000 0.000 0.000 0.000 0.000
p-value of Tn 0.002 0.000 0.089 0.013 0.070
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Figure 7. GARCH-filtered daily log-returns for our four stocks for the period from 14.08.2003 to 29.12.2006.

Corp (XOM), Deutsche Telekom AG (DT) and France Telecom (FTE). Financial log-returns are usually
not independent over time. Hence, the original vectors of log-returns are processed by a GARCH filter
before further modelling. We use the GARCH(1,1)-model (Bollerslev, 1986):

rt = c + σt zt

E[zt] = 0 and Var[zt] = 1 (9)

σ2
t = a0 + a ǫ2t−1 + b σ2

t−1.

It is well recognised that GARCH models, coupled with the assumption of conditionally normally dis-
tributed errors are unable to fully account for the tails of the distributions of daily returns. Hence, we
follow Venter and de Jongh (2002) and use the Normal Inverse Gaussian (NIG) distribution (Barndorff-
Nielsen, 1997) as the conditional distribution. In a study performed by Venter and de Jongh (2004) the
NIG distribution outperforms a skewed Student’s t-distribution and a non-parametric kernel approxima-
tion as the conditional distribution of a one-dimensional GARCH process. After filtering the original
returns with (9) (estimated parameter values are shown in Appendix A), the standardised residual vec-
tors are converted to uniform pseudo-observations. Figures 6-8 show the filtered daily log-returns and
pseudo-observations for each pair of assets.

Based on visual inspection and preliminary goodness-of-fit tests for bivariate pairs (like for the precip-
itation data, the copulae taken into consideration were the Student, Clayton, survival Clayton, Gumbel
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Figure 8. Pseudo-observations corresponding to Figure 7.

Table 5. Estimated Kendall’s tau for
pairs of variables for our four stocks.

Firm XOM DT FTE

BP 0.45 0.19 0.20
XOM 0.23 0.17
DT 0.48

and Frank copulae), we decided to examine a Frank NAC and Frank and Student PCC’s for this data
set.

3.3.1. Hierarchically nested Archimedean construction

Also for this data set, the most appropriate ordering of the variates in the decomposition is found by
comparing Kendall’s tau values for all bivariate pairs. The Kendall’s tau values are shown in Table 5.
As expected, stocks within one industrial sector are more dependent than stocks from different sectors.
Hence, we choose C11 as the copula of BP and XOM , C12 as the copula of DT and FTE, and C21 as
the copula of the remaining pairs. The leftmost column of Table 6 shows the estimated parameter values,
resulting log-likelihood and p-value for the Frank HNAC. Even though this structure is not rejected by
Tn, the strong rejection by Sn suggests that the fit is not very good. Hence, we conclude that the Frank
NAC is not able to appropriately fit the equity data.

3.3.2. Pair-copula construction

Again, the most appropriate ordering of the variates in the decomposition is determined by the size of
the Kendall’s tau values. Hence, we choose C11 as the copula of BP and XOM , C12 as the copula of
XOM and DT , and C13 as the copula of DT and FTE. The parameters of the PCC are estimated
by maximum likelihood, see Algorithm 4 in Aas et al. (2007). The two rightmost columns of Table 6
shows the estimated parameter values, resulting log-likelihood and estimated p-values for the Frank and
Student PCCs. We see that the Frank PCC is rejected by Sn. Moreover, the p-value of Tn is equal to
the one for the Frank NAC. The Student PCC, on the other hand, provides a very good fit and is not
even rejected by Sn. Hence, we conclude that it fits the equity data very well.
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Table 6. Estimated parameters, log-likelihood and
estimated p-values for NAC and PCCs fitted to the
filtered equity data.

Parameter
NAC PCC

Frank Frank Student

θ11 \ ν11 5.57 5.56 0.70 \ 13.8
θ12 \ ν12 6.34 1.89 0.32 \ 134.5
θ13 \ ν13 - 6.32 0.73 \ 6.4
θ21 \ ν21 1.78 0.91 0.14 \ 12.0
θ22 \ ν22 - 0.30 0.06 \ 20.6
θ31 \ ν31 - 0.33 0.07 \ 17.8

Log-likelihood 616.45 618.63 668.49

p-value of Sn 0.006 0.008 0.410
p-value of Tn 0.385 0.385 0.697

3.4. Validation
With the increasing complexity of models there is always the risk of overfitting the data. To examine
whether this is the case for the PCC, we validate it out-of-sample for the equity portfolio. More specifically,
we use the GARCH-NIG-Student PCC described in Section 3.3.2 to determine the risk of the return
distribution for an equally weighted portfolio of BP, XOM, DT, and FTE over a one-day horizon. The
equally-weighted portfolio is only meant as an example. In practice, the weights will fluctuate unless the
portfolio is rebalanced every day.

The model estimated from the period 14.03.2003 to 29.12.2006 is used to forecast 1-day VaR at
different significance levels for each day in the period from 30.12.2006 to 11.06.2007 (110 days). The test
procedure is as follows: For each day t in the test set:

(a) For each variable j = 1, . . . , 4, compute the one-step ahead forecast of σj,t, given information up to
time t.

(b) For each simulation n = 1, . . . , 10, 000

• Generate a sample u1, . . . u4 from the estimated Student PCC.

• Convert u1, . . . u4 to NIG(0,1)-distributed samples z1, . . . , z4 using the inverses of the corre-
sponding NIG distribution functions.

• For each variable j = 1, . . . , 4, determine the log-return rj,t = cj,t + σj,t zj. (Here cj,t is
computed as the mean of the last 100 observed log-returns.)

• Compute the return of the portfolio as rp,t =
∑4

j=1
1
4rj,t.

(c) For significance levels q ∈ {0.005, 0.01, 0.05}
• Compute the 1-day VaRq

t as the qth-quantile of the distribution of rp,t.

• If VaRq
t is greater than the observed value of rp,t this day, a violation is said to occur.

Figure 9 shows the actual log-returns for the portfolio in the period 30.12.2006 to 11.06.2007 and the
corresponding VaR levels obtained from the procedure described above. Further, the two upper rows of
Table 7 gives the number of violations x, of VaR for each significance level and with the expected values,
respectively. To test the significance of the differences between the observed and the expected values, we
use the likelihood ratio statistic by Kupiec (1995). The null hypothesis is that the expected proportion
of violations is equal to α. Under the null hypothesis, the likelihood ratio statistic given by

2ln

(

( x

N

)x (

1 − x

N

)N−x
)

− 2ln
(

αx(1 − α)N−x
)

,

where N is the length of the sample, is asymptotically distributed as χ2(1). We have computed p-values
of the null hypothesis for each quantile. The results are shown in the lower row of Table 7. If we use a
5% level for the Kupiec LR statistic, the null hypothesis is not rejected for any of the three quantiles.
Hence, the GARCH-NIG-Student PCC seems to work very well out-of-sample.
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Figure 9. Log-returns for the equity portfolio for the period 30.12.2006 - 11.06.2007 along with 0.5%, 1%, 5% VaR
simulated from the estimated GARCH-NIG-Student PCC.

Table 7. Number of violations of VaR, ex-
pected number of violations and p-values
for the Kupiec test.
Significance level 0.005 0.01 0.05

Observed 1 2 9
Expected 0.55 1.1 5.5
P-value 0.13 0.44 0.16

4. Summary and Conclusions

In this paper we have reviewed two classes of structures for construction of higher-dimensional dependence;
the nested Archimedean constructions (NACs) and the pair-copula constructions (PCCs). For both
structures, a multivariate data set is modelled using a cascade of lower-dimensional copulae. They differ
however in their construction of the dependence structure, the PCC being more flexible in that it allows
for the free specification of d(d − 1)/2 copulae, while the NAC’s only allow for d − 1.

Simulation and estimation techniques for the two structures have been examined, and we have shown
that the PCCs in general are more computationally efficient than the NACs. The fit of the two construc-
tions has been tested on two different four-dimensional data sets; precipitation values and equity returns,
using state of the art copula goodness-of-fit procedures. The NACs considered are strongly rejected for
both our data sets. For the precipitation data the Gumbel PCC provides a better fit. However, since
even this structure is rejected by one of the goodness-of-fit tests used, one should look for other copula
types that might capture the properties of the precipitation data even better than the Gumbel copula
does. For the equity data, the Student PCC provides a good fit, and through VaR calculations we have
shown that it does not overfit the training data, but works very well also out-of-sample.

Based on the properties presented and the results from the two applications we recommend in general
the PCC over the NAC for the following reasons. First, the NAC has an important restriction in that the
degree of dependence must decrease with the level of nesting. When looking for appropriate data sets for
the applications in this paper, it turned out to be quite difficult to find real-world data sets satisfying this
restriction. In addition, the NAC is restricted to the Archimedean class, and there are even restrictions
on which Archimedean copulae that can be mixed. There might be real-world situations where there are
natural hierarchy groupings of variables. In such cases the NAC’s may come into consideration. However,
the technical restrictions of the NAC might prevent extensive use.

The PCC, on the other hand, can be built using copulas from any class and there are no restrictions on
the parameters of the structure. As far as we are concerned, the only potential disadvantage of the PCC
compared to the NAC is that neither the unspecified bivariate margins nor the multivariate distribution
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in general will belong to a known parametric family. However, we do not view this as a significant problem
since these distributions might easily be obtained through simulation.
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Embrechts, P., F. Lindskog, and A. McNeil (2003). Modelling dependence with copulas and applications
to risk management. In S.T.Rachev (Ed.), Handbook of Heavy Tailed Distributions in Finance. North-
Holland: Elsevier.

Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate analysis 95, 119–152.

Frees, E. W. and E. A. Valdez (1998). Understanding relationships using copulas. North American
Actuarial Journal 2 (1), 1–25.

Genest, C., J.-F. Quessy, and B. Rémillard (2006). Goodness-of-fit procedures for copula models based
on the probability integral transform. Scandinavian Journal of Statistics 33, 337–366.

Genest, C. and B. Rémillard (2005). Validity of the parametric bootstrap for goodness-of-fit testing in
semiparametric models. Technical Report G-2005-51, GERAD, Montreal, Canada.

Genest, C., B. Rémillard, and D. Beaudoin (2007). Omnibus goodness-of-fit tests for copulas: A review
and a power study. Insurance: Mathematics and Economics 42. In press.
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Table 8. Estimated GARCH and NIG parameters for our four
stocks.
Parameter BP XOM DT FTE

a0 1.598e-06 1.400e-06 1.801e-06 1.231e-06
a 0.010 0.023 0.025 0.028
b 0.978 0.968 0.963 0.966

β -0.357 -0.577 0.105 0.037
ψ 3.686 2.293 1.173 1.670

A. Parameters for GARCH-NIG model

Table 8 shows the estimated parameters for the GARCH-NIG model used in Section 3.3. For further
details of the estimation procedure see Venter and de Jongh (2002).


