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sample size and strength of dependence on the nominal level and power of the different approaches. While
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1. Introduction

A copula contains all the information about the dependency structure of a continuous random vector
X = (X1, . . . , Xd). Due to the representation theorem of Sklar (1959), every distribution function H can
be written as H(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}, where F1, . . . , Fd are the marginal distributions
and C : [0, 1]d → [0, 1] is the copula. This enables the modelling of marginal distributions and the
dependence structure in separate steps. This feature in particular has motivated successful applications
in areas such as survival analysis, hydrology, actuarial science and finance. For exhaustive and general
introductions to copulae, the reader is referred to Joe (1997) and Nelsen (1999), and for introductions
oriented to financial applications, Malevergne and Sornette (2006) and Cherubini et al. (2004). While
the evaluation of univariate distributions is well documented, the study of goodness-of-fit (g-o-f) tests for
copulas emerged only recently as a challenging inferential problem.

Let C be the underlying d-variate copula of a population. Suppose one wants to test the composite
g-o-f hypothesis

H0 : C ∈ C = {Cθ; θ ∈ Θ} vs. H1 : C /∈ C = {Cθ; θ ∈ Θ}, (1)

where Θ is the parameter space. Lately, several contributions have been made to test this hypothesis,
e.g. Genest and Rivest (1993), Shih (1998), Breymann et al. (2003), Malevergne and Sornette (2003),
Scaillet (2005), Genest and Rémillard (2008), Fermanian (2005), Panchenko (2005), Berg and Bakken
(2005), Genest et al. (2006a), Dobrić and Schmid (2007), Quessy et al. (2007), Genest et al. (2008),
among others. However, general guidelines and recommendations are sparse.

For univariate distributions, the g-o-f assessment can be performed using e.g. the well-known Anderson-
Darling statistic (Anderson and Darling, 1954), or less quantitatively using a QQ-plot. In the multivariate
domain there are fewer alternatives. A simple way to build g-o-f approaches for multivariate random vari-
ables is to consider multi-dimensional chi-square approaches, as in Dobrić and Schmid (2005) for example.
The problem with this approach, as with all binned approaches based on gridding the probability space, is
that they will not be feasible for high dimensional problems due to the curse of dimensionality. Another
issue with binned approaches is that the grouping of the data is arbitrary and not trivial. Grouping
too coarsely destroys valuable information and the ability to contrast distributions becomes very lim-
ited. On the other hand, too small groups lead to a highly irregular empirical cumulative distribution
function (cdf) due to the limited amount of data. For these reasons, multivariate binned approaches are
not considered in this study. Multivariate kernel density estimation (KDE) approaches such as the ones
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proposed by Fermanian (2005) and Scaillet (2005) are also excluded from this study as they will simply
be too computationally exhaustive for high-dimensional problems. The author believes g-o-f to be most
useful for high-dimensional problems since copulae are harder to conceptualize in such cases. Moreover,
the consequences of poor model choice are often much greater in higher dimensional problems, e.g. risk
assessments for high-dimensional financial portfolios.

The class of dimension reduction approaches is a more promising alternative. Dimension reduction
approaches reduce the multivariate problem to a univariate problem, and then apply some univariate
test, leading to numerically efficient approaches even for high-dimensional problems. These approaches
primarily differ in the way the dimension reduction is carried out. For the univariate test it is common to
apply standard univariate statistics such as Kolmogorov- or Cramér-von Mises type statistics. Examples
include Breymann et al. (2003), Malevergne and Sornette (2003), Genest et al. (2006a), Berg and Bakken
(2005), Quessy et al. (2007) and Genest and Rémillard (2008) among others.

This paper is organized as follows. In Section 2 some preliminaries are presented. Section 3 gives
an overview of the nine g-o-f approaches considered, including three new ones. In Section 4 results are
presented from an extensive Monte Carlo study where we examine the effect of dimension, sample size and
strength of dependence on the nominal level and power of the approaches. Several null- and alternative
hypothesis copulae are considered. Further, this section also presents results from a novel numerical
study of the effect of permutation order for approaches based on Rosenblatt’s transform. Finally, Section
5 discusses our findings and makes some recommendations for future research. In addition, detailed
testing procedures, leading to proper P -value estimates for all approaches, are given in the appendix.

2. Preliminaries

For copula g-o-f testing one is interested in the fit of the copula alone. Typically, one does not wish
to introduce any distributional assumptions for the marginals. Instead the testing is carried out using
rank data. Suppose we have n independent samples x1 = (x11, . . . , x1d), . . . ,xn = (xn1, . . . , xnd) from
the d-dimensional random vector X. The inference is then based on the so-called pseudo-samples z1 =
(z11, . . . , z1d), . . . , zn = (zn1 . . . , znd) from the pseudo-vector Z, where

zj = (zj1, . . . , zjd) =

(
Rj1

n + 1
, . . . ,

Rjd

n + 1

)
, (2)

where Rji is the rank of xji amongst (x1i, . . . , xni). The denominator (n + 1) is used instead of n to
avoid numerical problems at the boundaries of [0, 1]d. This transformation of each margin through their
normalized ranks is often denoted the empirical marginal transformation. Given the independent samples
(x1, . . . ,xn), the pseudo-samples (z1, . . . , zn) can be considered to be samples from the underlying copula
C. However, the rank transformation introduces dependence and (z1, . . . , zn) are no longer independent
samples. The practical consequence is the need for parametric bootstrap procedures to obtain reliable
P -value estimates. This is treated in more detail in Secion 3.10.

2.1. Rosenblatt’s transformation

The Rosenblatt transformation, proposed by Rosenblatt (1952), transforms a set of dependent variables
into a set of independent U [0, 1] variables, given the multivariate distribution. The transformation is a
universally applicable way of creating a set of i.i.d. U [0, 1] variables from any set of dependent variables
with known distribution. Given a test for multivariate, independent uniformity, the transformation can
be used to test the fit of any assumed model.

Definition 2.1 (Rosenblatt’s transformation).
Let Z = (Z1, . . . , Zd) denote a random vector with marginal distributions Fi(zi) = P (Zi ≤ zi) and
conditional distributions Fi|1...i−1(Zi ≤ zi|Z1 = z1, . . . , Zi−1 = zi−1) for i = 1, . . . , d. Rosenblatt’s
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transformation of Z is defined as R(Z) = (R1(Z1), . . . ,Rd(Zd)) where

R1(Z1) = P (Z1 ≤ z1) = F1(z1),

R2(Z2) = P (Z2 ≤ z2|Z1 = z1) = F2|1(z2|z1),

...

Rd(Zd) = P (Zd ≤ xd|Z1 = z1, . . . , Zd−1 = zd−1) = Fd|1...d−1(zd|z1, . . . , zd−1).

The random vector V = (V1, . . . , Vd), where Vi = Ri(Zi), is now i.i.d. U [0, 1]d.

A recent application of this transformation is multivariate g-o-f tests. The Rosenblatt transformation
is applied to the samples (x1, . . . ,xn), assuming a multivariate null hypothesis distribution. Under the
null hypothesis, the resulting transformed samples (v1, . . . ,vn) should be independent. Hence a test of
multivariate independence is carried out. The null hypothesis is typically a parametric copula family.
The parameters of this copula family need to be estimated before performing the transformation.

One advantage with Rosenblatt’s transformation in a g-o-f setting is that the null- and alternative
hypotheses are the same, regardless of the distribution before the transformation. Hong and Li (2005)
report Monte Carlo evidence of multivariate tests using transformed variables outperforming tests using
the original random variables. Chen et al. (2004) believe that a similar conclusion also applies to g-o-f
tests for copulae.

A disadvantage with tests based on Rosenblatt’s transformation is the lack of invariance with respect
to the permutation of the variables since there are d! possible permutations. However, as long as the
permutation is decided randomly, the results will not be influenced in any particular direction. The
practical implications of this disadvantage is studied in Section 4.2.

2.2. Parameter estimation
Testing the hypothesis in (1) involves the estimation of the copula parameters θ by some consistent

estimator θ̂. There are mainly two ways of estimating these parameters; the fully parametric method or
a semi-parametric method. The fully parametric method, termed the inference functions for marginals
(IFM) method (Joe, 1997), relies on the assumption of parametric, univariate marginals. First, the
parameters of the marginals are estimated and then each parametric margin is plugged into the copula
likelihood which is then maximized with respect to the copula parameters. Since we treat the marginals
as nuisance parameters we rather proceed with the pseudo-samples (z1, . . . , zn) and the semi-parametric
method. This method is denoted the pseudo-likelihood (Demarta and McNeil, 2005) or the canonical
maximum likelihood (CML) (Romano, 2002) method, and is described in Genest et al. (1995) and in
Shih and Louis (1995) in the presence of censorship. Having obtained the pseudo-samples (z1, . . . , zn) as
described in (2), the copula parameters can be estimated using either maximum likelihood (ML) or using
the well-known relations to Kendall’s tau.

For elliptical copulae in higher dimensions we estimate pairwise Kendall’s taus. These are inverted
and gives the components of the correlation- and scale matrices for the Gaussian and Student copulae,
respectively. For the Student copula one must also estimate the degree-of-freedom parameter. We follow
Mashal and Zeevi (2002) and Demarta and McNeil (2005), who propose a two-stage approach in which
the scale matrix is first estimated by inversion of Kendall’s tau, and then the pseudo-likelihood function
is maximized with respect to the degree-of-freedom ν, using the estimate of the scale matrix. For the
Archimedean copulae the parameter is estimated by inversion of Kendall’s tau. For dimension d > 2 we
estimate the parameter as the average of the d(d − 1)/2 pairs of Kendall’s taus.

3. Copula goodness-of-fit approaches

The following nine copula g-o-f approaches are examined:

A1: Based on Rosenblatt’s transformation, proposed by Berg and Bakken (2005). This approach in-
cludes, as special cases, the approaches proposed by Malevergne and Sornette (2003), Breymann
et al. (2003), and the second approach in Chen et al. (2004).
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A2: Based on the the empirical copula and the copula distribution function, proposed by Genest and
Rémillard (2008).

A3: Based on approach A2 and the Rosenblatt transformation, proposed by Genest et al. (2008).

A4: Based on the empirical copula and the cdf of the copula function, proposed by Genest and Rivest
(1993), Wang and Wells (2000), Savu and Trede (2004) and Genest et al. (2006a).

A5: Based on Spearman’s dependence function, proposed by Quessy et al. (2007).

A6: A new approach that extends Shih’s test (Shih, 1998) for the bivariate Clayton model to arbitrary
dimension.

A7: Based on the inner product between two vectors as a measure of their distance, proposed by
Panchenko (2005).

A8: A new approach based on approach A7 and the Rosenblatt transformation.

A9: A new approach based on averages of the approaches above.

Approaches A1-A5 are all dimension reduction approaches, while A6 is a moment-based approach and
A7-A8 are denoted full multivariate approaches. For all the dimension reduction approaches the study is
restricted to the Cramér-von Mises (CvM) statistic for the unviariate test.

3.1. Approach A1

Berg and Bakken (2005) propose a generalization of the approches proposed by Breymann et al. (2003)
and Malevergne and Sornette (2003). The approach is based on Rosenblatt’s transformation applied to
the pseudo-samples (z1, . . . , zn) from (2), assuming a null hypothesis copula Cbθ. Under the null hypothesis
the resulting samples (v1, . . . ,vn) are samples from the independence copula C⊥ †.

The dimension reduction of approach A1 is based on the samples (v1, . . . ,vn):

W1j =

d∑

i=1

Γ{vji; α}, j = {1, . . . , n}

where Γ is any weight function used to weight the information in (v1, . . . ,vn) and α is the set of weight
parameters. Any weight function may be used, depending on the use and the region of the unit hypercube
one wishes to emphasize. Consider for example the special case Γ{vji; α} = Φ−1(vji)

2 which corresponds
to the approach proposed by Breymann et al. (2003). If the null hypothesis is the Gaussian copula this
is also equivalent with the approach proposed by Malevergne and Sornette (2003). Both of the latter
studies apply the Anderson-Darling (Anderson and Darling, 1954) statistic. Berg and Bakken (2005) show
that the Anderson-Darling statistic with Γ{vji; α} = |vji − 0.5| performs particularly well for testing the
Gaussian null hypothesis. Hence, when performing the numerical studies in Section 4.1 the following two
special cases of approach A1 are considered:

A(a)
1 : Γ{vji; α} = Φ−1(vji)

2 and A(b)
1 : Γ{vji; α} = |vji − 0.5|.

For approach A(a)
1 it is easy to see that the distribution F1 of W1j is a χ2

d distribution for all j†. Hence

we can compare W1j directly with the χ2
d distribution. However, for approach A(b)

1 , and in general, the
distribution of W1j is not known and one must turn to a double bootstrap procedure (see Section 3.10)
to approximate the cdf F1 under the null hypothesis. The test observator S1 of approach A1 is defined
as the cdf of F1(W1):

S1(w) = P{F1(W1) ≤ w}, w ∈ [0, 1].

†Since we are working with rank data this is only close to, but not exactly true. This issue is discussed in

Section 3.10. Until then it is assumed that this holds
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Under the null hypothesis S1(w) = w for all j. The empirical version of the test observator can be
computed as

Ŝ1(w) =
1

n + 1

n∑

j=1

I{F1(W1j) ≤ w}.

The appropriate version of the CvM statistic is (shown in Appendix B):

T̂1 = n

∫ 1

0

{Ŝ1(w) − S1(w)}2 dS1(w)

=
n

3
+

n

n + 1

n∑

j=1

Ŝ1

(
j

n + 1

)2

− n

(n + 1)2

n∑

j=1

(2j + 1)Ŝ1

(
j

n + 1

)
.

3.2. Approach A2

Genest and Rémillard (2008) propose to use the copula distribution function for the dimension reduction.
The approach is based on the empirical copula process, introduced by Deheuvels (1979):

Ĉ(u) =
1

n + 1

n∑

j=1

I {Zj1 ≤ u1, . . . , Zjd ≤ ud} . (3)

where Zj is given by (2) and u = (u1, . . . , ud) ∈ [0, 1]d. The empirical copula is the observed frequency

of P (Z1 < u1, . . . , Zd < ud). The idea is to compare Ĉ(z) with an estimation Cbθ(z) of Cθ. This is a
very natural approach for copula g-o-f testing considering that most univariate g-o-f tests are based on a
distance between empirical- and null hypothesis distribution functions. Genest et al. (2008) state that,

given that it is entirely non-parametric, Ĉ is the most objective benchmark for testing the copula g-o-f.
A CvM statistic for approach A2 is (Genest et al., 2008):

T̂2 = n

∫

[0,1]d

{
Ĉ(z) − Cbθ(z)

}2

dĈ(z) =

n∑

j=1

{
Ĉ(zj) − Cbθ(zj)

}2

. (4)

3.3. Approach A3

Genest et al. (2008) propose to apply approach A2 to V = R(Z). The idea is then to compare Ĉ(v) with
the independence copula C⊥(v). A CvM statistic for approach A3 becomes (Genest et al., 2008):

T̂3 = n

∫

[0,1]d

{
Ĉ(v) − C⊥(v)

}2

dĈ(v) =

n∑

j=1

{
Ĉ(vj) − C⊥(vj)

}2

.

3.4. Approach A4

Genest and Rivest (1993), Wang and Wells (2000), Savu and Trede (2004) and Genest et al. (2006a)
propose to use Kendall’s dependence function K(w) = P (C(Z) ≤ w) as a g-o-f approach. The test
observator S4 of approach A4 becomes

S4(w) = P{C(Z} ≤ w}, w ∈ [0, 1],

where Z is the pseudo-vector. Under the null hypothesis, S4(w) = S4,bθ(w) which is copula specific. The
empirical version of test observator S4 equals

Ŝ4(w) =
1

n + 1

n∑

j=1

I{Ĉ(zj) ≤ w}.

A CvM statistic for approach A4 is given by:

T̂4 = n

∫ 1

0

{Ŝ4(w) − S4,bθ(w)}2 dŜ4(w) =

n∑

j=1

{
Ŝ4

(
j

n + 1

)
− S4,bθ

(
j

n + 1

)}2

.
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3.5. Approach A5

Quessy et al. (2007) propose a g-o-f approach for bivariate copulae based on Spearman’s dependence
function L2(w) = P (Z1Z2 ≤ w). Notice that L2(w) = P (C⊥(Z1, Z2) ≤ w). A natural extension to
arbitrary dimension d is then Ld(w) = P (C⊥(Z) ≤ w) and the test observator S5 of approach A5

becomes

S5(w) = P{C⊥(Z) ≤ w}, w ∈ [0, 1],

where Z is the pseudo-vector. Under the null hypothesis, S5(w) = S5,bθ(w), which is copula specific. The
empirical version of test observator S5 equals

Ŝ5(w) =
1

n + 1

n∑

j=1

I{C⊥(zj) ≤ w}.

A CvM statistic for approach A5 is given by:

T̂5 = n

∫ 1

0

{Ŝ5(w) − S5,bθ(w)}2 dŜ5(w) =

n∑

j=1

{
Ŝ5

(
j

n + 1

)
− S5,bθ

(
j

n + 1

)}2

.

3.6. Approach A6

Shih (1998) propose a moment-based g-o-f test for the bivariate gamma frailty model, also known as Clay-
ton’s copula. Shih (1998) considered unweighted and weighted estimators of the dependency parameter
θ via Kendall’s tau and a weighted rank-based estimator, namely

θ̂τ =
2τ̂

1 − τ̂
and θ̂W =

∑
i<j ∆ij/Wij∑

i<j(1 − ∆ij)/Wij
,

where τ̂ = −1 + 4
∑

i<j ∆ij/{n(n− 1)}, ∆ij = I{(Zi1 −Zj1)(Zi2 −Zj2) > 0} and Wij =
∑n

k=1 I{Zk1 ≤
max(Zi1, Zj1), Zk2 ≤ max(Zi2, Zj2)}. Since θ̂τ and θ̂W are both unbiased estimators of θ under the null
hypothesis that C = Cθ for some θ ≥ 0, Shih (1998) propose the g-o-f statistic

T̂Shih =
√

n{θ̂τ − θ̂W }.

Shih (1998) shows that this statistic is asymptotically normal under the null hypothesis. Unfortunately,
the variance provided by Shih (1998) was found to be wrong by Genest et al. (2006b), where a corrected
formula is provided.

One way of extending this approach to arbitrary dimension d is comparing each pairwise element
of θ̂τ and θ̂W . The resulting vector of d(d − 1)/2 statistics will tend, asymptotically, to a d(d − 1)/2
dimensional normal vector with a non-trivial covariance matrix. The normalized version of the vector,
i.e. the inverted square root of the covariance matrix multiplied with the vector of statistics, will be
asymptotically standard normal and hence the sum of squares will now be chi-squared with d(d − 1)/2
degrees of freedom. The covariance matrix of the vector of statistics remains to be computed and is
deferred to future research. For now we simply compute the non-normalized sum of squares and perform
a parametric bootstrap (see Section 3.10) to estimate the P -value.

The test statistic for approach A6 then becomes:

T̂6 =
d−1∑

i=1

d∑

j=i+1

{
θ̂τ,ij − θ̂W,ij

}2

.

θ̂W , and hence approach A6, is constructed specifically for testing the Clayton copula and will not be
considered for testing any other copula model.
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3.7. Approach A7

Panchenko (2005) propose to test the entire data set in one step. The approach is based on the inner

product of Z and Zbθ, where Z is the pseudo-vector and Zbθ is the null hypothesis vector with θ̂ being a
consistent estimator of the copula parameter. The inner product can be used as a measure of the distance
between two vectors. Now define the squared distance Q between the two vectors as

Q =
〈
Z − Zbθ |κd| Z − Zbθ

〉
.

Here κd is a positive definite symmetric kernel such as the Gaussian kernel:

κd(Z,Z′) = exp
{
−‖Z− Z

′‖2/(2dh2)
}

,

with ‖ · ‖ denoting the Euclidean norm in R
d and h > 0 being a bandwidth. Q will be zero if and only if

Z = Zbθ. Suppose we have the random samples (z1, . . . , zn) from Z. Now generate the random samples
(z∗1, . . . , z

∗
n) from the null hypothesis vector Zbθ. Following the properties of an inner product, Q can be

decomposed as Q = Q11 − 2Q12 + Q22. Each term of this decomposition is estimated using V-statistics
(see Denker and Keller (1983) for an introduction to U- and V-statistics). The test statistic for approach
A7 is given by:

T̂7 =
1

n2

n∑

i=1

n∑

j=1

κd(zi, zj) −
2

n2

n∑

i=1

n∑

j=1

κd(zi, z
∗
j ) +

1

n2

n∑

i=1

n∑

j=1

κd(z
∗
i , z

∗
j ).

3.8. Approach A8

Along the lines of approach A3 we propose a version of approach A7 based on V = R(Z). Given the
random samples (v∗

1 , . . . ,v
∗
n), drawn from the independence copula, the statistic for approachA8 is simply

T̂8 =
1

n2

n∑

i=1

n∑

j=1

κd(vi,vj) −
2

n2

n∑

i=1

n∑

j=1

κd(vi,v
∗
j ) +

1

n2

n∑

i=1

n∑

j=1

κd(v
∗
i ,v∗

j ).

For approaches A7 and A8 it may seem odd to base the deviance measure on one single sample from
the null hypothesis and that an average over several repetitions would be more accurate. However, A7 is
the approach in Panchenko (2005) and we include all approaches in their unaltered form. For approach
A8 we wish to examine the effect of Rosenblatt’s transformation on approach A7 so we stick to the
deviance from one single sample.

3.9. Approach A9

One can imagine that the different approaches capture deviations from the null hypothesis in different
ways. Hence, we propose to average several approaches in an attempt to capture these differences. The
different approaches are not on the same scale, hence such averages should be taken over standardized
variables, i.e. all approaches should be scaled appropriately. However, we include these averages in their
simplest, non-standardized form, as suggestions for future research. Two specific averages are considered.
First the average of all nine approaches and second the average of three approaches based on the empirical
copula, namely A2, A3 and A4. The corresponding statistics are defined as

T̂
(a)
9 =

1

9




T̂
(a)
1 + T̂

(b)
1 +

8∑

j=2

T̂j




 and T̂
(b)
9 =

1

3

{
T̂2 + T̂3 + T̂4

}
.

3.10. Testing procedure
In Section 3.1 it was assumed that V = R(Z) is i.i.d. U [0, 1]d. The use of ranks in the transformation
of the marginals introduce sample dependence in V. Thus V is only close to, but not exactly i.i.d.
The consequence is that approximations of the limiting distributions of test statistics are inaccurate. In
addition, the distributions depend on the value of the dependence parameter θ. Nevertheless, we can



8 D.Berg

obtain reliable P -value estimates through a parametric bootstrap procedure. The parametric bootstrap
procedure used in Genest et al. (2006a) is adopted, the validity of which is established in Genest and
Rémillard (2008). The asymptotic validity of the bootstrap procedure has only been proved so far for
the approaches A2 and A4. However, results herein and in Berg and Bakken (2005); Dobrić and Schmid
(2007) strongly indicate validity also for the other approaches.

Detailed test procedures for all approaches can be found in Berg (2007). Here, we restrict the presen-
tation to approach A2:

(1) Extract the pseudo-samples (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Compute Ĉ(z) according to (3).

(4) If there is an analytical expression for Cθ, compute the estimated statistic T̂2 by plugging Ĉ(z) and
Cbθ(z) into (4). Jump to step (5).
If there is no analytical expression for Cθ then choose Nb ≥ n and carry out the following steps
(double bootstrap):

(i) Generate a random sample (x∗
1, . . . ,x

∗
Nb

) from the null hypothesis copula Cbθ and compute the
associated pseudo-samples (z∗1, . . . , z

∗
Nb

) according to (2).

(ii) Approximate Cbθ by C∗
bθ
(u) = 1

Nb+1

∑Nb

l=1 I{z∗l ≤ u}, u ∈ [0, 1]d.

(iii) Approximate the CvM statistic in (4) by T̂2 =
∑n

j=1

{
Ĉ(zj) − C∗

bθ
(zj)

}2

.

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K} (parametric bootstrap):

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ and compute

the associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Let Ĉ0
k(u) = 1

n+1

∑n
j=1 I{z0

j,k ≤ u}, u ∈ [0, 1]d.

(d) If there is an analytical expression for Cθ, let T̂ 0
2,k =

∑n
j=1

{
Ĉ0

k(z0
j,k) − Cbθ0

k

(z0
j,k)

}2

and jump

to step (6).
If there is no analytical expression for Cθ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x0∗
1,k, . . . ,x0∗

Nb,k) from the null hypothesis copula Cbθ0
k

and

compute the associated pseudo-samples (z0∗
1,k, . . . , z0∗

Nb,k) according to (2).

(ii) Approximate Cbθ0
k

by C0∗
bθ0

k

(u) = 1
Nb+1

∑Nb

l=1 I{z0∗
l,k ≤ u}, u ∈ [0, 1]d,

(iii) Approximate the CvM statistic in (4) by T̂ ∗
2,k =

∑n
j=1

{
Ĉ0

k(z0
j,k) − C0∗

bθ0
k

(z0
j,k)

}2

.

(6) An approximate P -value for approach A2 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

2,k > T̂2}.

In this parametric bootstrap procedure there are two parameters that needs to be chosen, the sample
size Nb for the double bootstrap step (step 4) and the number of replications K (step 5) for the estimation
of P -values. In this paper the number of replications K = 1000 while the double bootstrap sample size
Nb = 10000 for approach A1, and for approaches A2, A4 and A5 Nb = 2500 for dimensions d = {2, 4}
and Nb = 5000 for dimension d = 8. See Berg (2007) for details.



Copula goodness-of-fit testing 9

4. Numerical experiments

4.1. Size and power simulations
A large Monte Carlo study is performed to assess the properties of the approaches for various dimensions,
sample sizes, levels of dependence and alternative dependence structures. The nominal levels and the
power against fixed alternatives are of particular interest. The simulations are carried out according to
the following factors:

• H0 copula (5 choices: Gaussian, Student, Clayton, Gumbel, Frank),

• H1 copula (5 choices: Gaussian, Student (ν = 6), Clayton, Gumbel, Frank),

• Kendall’s tau (2 choices: τ = {0.2, 0.4}),

• Dimension (3 choices: d = {2, 4, 8}),

• Sample size (2 choices: n = {100, 500}).

Due to extreme computational load, the Student copula is only considered as null hypothesis in the
bivariate case. In each of the remaining 240 cases, a sample of dimension d and size n is drawn from the
H1 copula with dependence parameter corresponding to τ . The statistics of the various g-o-f approaches
are then computed under the null hypothesis H0 and P -values are estimated. This entire procedure
is repeated 10000 times in order to estimate the nominal level and power for each approach under
consideration.

Since we apply a parametric bootstrap procedure in the estimation of P -values, critical values are
obtained by simulating from the null hypothesis, and hence all reported powers are so-called size-adjusted
powers and approaches can be compared appropriately (see e.g. Hendry (2006) and Florax et al. (2006)
for size-adjustment suggestions).

A natural way of comparing approaches would be to rank their performance. However, an approach
can be almost as good as the best approach in all cases but not necessarily the very best. For example
when testing the Gaussian copula where the alternative is the Gumbel copula for d = 4, n = 500 and
τ = 0.40, approach A2

9 will be ranked 1 with a power of 99.8 while approach A5 will be ranked number
5 with a power of 98.1. This small difference may not be statistically significant and purely due to
Monte Carlo variation. Hence, we rather consider boxplots showing the differences in power from the
best performing approach. We also present average powers for combinations of dimension and sample
size, i.e. averaged over dependency levels and alternative copulae.

Sections 4.1.1-4.1.5 presents power difference boxplots and average power tables for testing the Gaus-
sian, Student, Clayton, Gumbel and Frank null hypotheses. Detailed tables with all power results are
deferred to Appendix C.

The critical values of each statistic under the true null hypothesis are tabulated for each dimension
and sample size and for many levels of dependence. For the power simulations we used table look-up
with linear interpolation to ensure comparison with the appropriate critical value. Despite the tabulation
this computationally exhaustive experiment would not have been feasible without access to the Titan
computer grid at the University of Oslo, a cluster of (at the time) 1, 750 computing cores, 6.5 TB
memory, 350 TB local disk and 12.5 Tflops.

4.1.1. Testing the Gaussian hypothesis

Let us first consider testing the Gaussian hypothesis under several fixed alternatives. The following
summary can be read from Figure 1, Table 1 and the extensive results in Table C.4.

• Nominal levels of all approaches match prescribed size of 5%

• Power generally (but not always) increases with level of dependence.

• Power increases with sample size as it should for the approaches to be consistent
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Figure 1. Power differences from the best approach for testing the Gaussian copula.

• Power generally (but not always) increases with dimension, as expected. See e.g. Chen et al.
(2004) who show that the Kullbach-Leibler Information Criterion (a measure of distance between
two copulae) between the Gaussian- and Student copulae increases with dimension.

• Approaches A4 and A(b)
9 perform very well and are recommended. However, there are exceptions

and additions worth noting:

– A1 and A3 perform particularly well for testing against heavy tails, i.e. the Student copula
alternative.

– A2 also perform very well for testing against Archimedean alternatives

– A3 performs particularly well for the Frank alternative in the bivariate case but very poor for
higher dimensions. This illustrates the danger of concluding for higher dimensions based on
bivariate results.

4.1.2. Testing the Student hypothesis

Next, we consider testing the Student copula hypothesis, for the bivariate case only. From Figure 2,
Table 1 and the extensive results in Table C.5, we can summarize:

• Nominal levels match prescribed size of 5%.

• Powers against Gaussian copula also match prescribed size. This is due to the Gaussian copula being
a special case of the Student copula. The statistics are computed by estimating the parameters of
the Student copula from the data and hence the Student copula null hypothesis will include the
Gaussian copula alternative through a large estimated value for the degree-of-freedom parameter.

• Approaches A2, A4 and in particular A(b)
9 perform very well and are recommended.



Copula goodness-of-fit testing 11

Table 1. Summary of rejection percentages (at 5% significance level). The results are averaged over sample size,
dependency levels and alternative copulae.

H0 d A(a)
1 A(b)

1 A2 A3 A4 A5 A6 A7 A8 A(a)
9 A(b)

9

Gauss 2 5.7 5.7 24.7 23.8 23.7 19.1 – 13.1 14.0 18.8 26.6

4 22.1 16.3 37.4 32.1 43.4 39.5 – 27.3 20.8 42.7 43.9

8 34.0 29.8 47.0 27.7 50.3 46.9 – 40.7 24.1 52.2 50.1
Student 2 5.2 5.2 23.5 17.1 23.9 19.5 – 12.3 12.1 20.6 25.0

Clayton 2 28.7 27.5 57.9 37.9 56.9 46.9 58.4 31.0 29.5 57.1 57.4
4 54.6 42.2 69.0 32.4 70.9 69.2 71.8 46.3 34.2 73.7 71.1
8 63.2 52.5 68.1 37.6 69.8 74.8 77.8 52.5 32.1 78.3 70.3

Gumbel 2 14.5 11.8 41.6 30.8 36.8 32.9 – 20.0 19.1 36.3 39.4

4 39.2 35.7 65.7 57.2 65.6 59.0 – 46.4 23.0 64.9 67.2

8 48.5 50.4 72.3 60.6 74.1 62.4 – 62.6 20.8 69.2 74.6

Frank 2 11.6 9.1 33.9 25.6 31.5 25.9 – 15.2 15.6 30.8 33.9

4 23.9 25.7 58.6 50.1 58.2 51.6 – 32.6 22.3 59.9 61.0

8 36.6 42.8 73.0 67.5 71.0 60.1 – 51.2 24.9 69.9 73.3

Note: Numbers in bold indicate the best performing approach.

• A(a)
1 , A(b)

1 , A7 and A8 all perform rather poorly.

• For testing the Gaussian and Student hypotheses, powers are in general, as seen from Table 1, lower
than for testing the Clayton, Gumbel and Frank hypotheses. This means that it is more difficult
to test the elliptical than the Archimedean hypotheses.

4.1.3. Testing the Clayton hypothesis

Figure 3, Table 1 and the extensive results in Table C.6 show the results of testing the Clayton copula
hypothesis. We summarize:

• Nominal levels match prescribed size of 5%.

• Approaches A2, A4, A(b)
9 and in particular A6 perform very well and are recommended. A(a)

9 also
performs very well but this is largely due to the good performance of A6 which dominates this
average approach since its scale is much larger than the other approaches included in the average.

• A7, A8 and in particular A3 perform very poorly.

• A(a)
1 and A(b)

1 also perform rather poorly.

• Powers are higher than for testing the Gaussian, Student and as we will soon see, the Gumbel and
Frank hypotheses, i.e. it is easier to test the Clayton hypothesis.

4.1.4. Testing the Gumbel hypothesis

We now test the Gumbel hypothesis. We summarize from Figure 4, Table 1 and the extensive results in
Table C.7:

• Nominal levels match prescribed size of 5%.

• Approaches A2, A4 and in particular A(b)
9 perform very well and are recommended.

• A(a)
1 , A(b)

1 and in particular A8 perform very poorly.

• Powers are lower than for testing the Clayton hypothesis but higher than for testing the Gaussian,
Student and as we will soon see, the Frank hypotheses.



12 D.Berg

A1
(i)

A1
(ii)

A2 A3 A4 A5 A7 A8 A9
(i)

A9
(ii)

0
20

40
60

80
P

ow
er

 d
iff

er
en

ce
 (

%
)

Figure 2. Distribution of power difference from the very best approach for testing the Student copula.
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Figure 3. Distribution of power difference from the very best approach for testing the Clayton copula.
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Figure 4. Distribution of power difference from the very best approach for testing the Gumbel copula.

4.1.5. Testing the Frank hypothesis

Finally, we test the Frank hypothesis. From Figure 5, Table 1 and the extensive results in Table C.8 we
summarize:

• Nominal levels match prescribed size of 5%.

• Approaches A2 and in particular A(b)
9 perform very well and are recommended.

• A4 and A(a)
9 also perform quite well.

• A(a)
1 , A(b)

1 and in particular A8 perform very poorly.

• Powers are higher than for testing the Gaussian and Student hypotheses but lower than for testing
the Clayton and Gumbel hypotheses.

4.2. Effect of permutation order for Rosenblatt’s transform
ApproachesA1, A3 and A8 are all based on Rosenblatt’s transform and a consecutive test of independence.
The lack of invariance to the order of permutation may pose a problem to these approaches. The
statistic for a given data set may prove very different depending on the permutation order. This is
an undesirable feature of a statistical testing procedure. However, the practical consequence of this
permutation invariance has not yet been investigated.

To examine this effect we draw random samples from an alternative copula H1. We then compute
a P -value, assuming a null copula H0. This is done for each approach and for each permutation of the
variables. We then look at the mean and standard deviation over all permutations. We repeat this
procedure 1000 times and report average values in Table 2. The study is restricted to dimension d = 5
for which there are d! = 120 different permutations, sample size n = 100 and dependence τ = 0.5.
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Figure 5. Distribution of power difference from the very best approach for testing the Frank copula.

For some of the approaches there are two sources of variation; permutation order and double bootstrap
procedure (see Section 3.10). In order to see the effect of permutation order only, we report the same
P -value variation results when the permutation is kept fixed, see Table 3.

From the two tables one can see that the permutation order adds no variance for approach A(a)
1 when

the null hypothesis is the Gaussian copula. This permutation invariance of approach A(a)
1 under the

Gaussian null hypothesis is proved in Appendix A. However, when using a different weight function or
when the null hypothesis is different from the Gaussian copula, variation is added due to the permutation
order. Note that in- or close to rejection regions, i.e. in cases where an approach has high power and the
P -value is very small, the variation due to permutation order will not have a practical consequence as the
conclusion will most probably be rejection of H0, regardless of permutation order. We see the same for

the other approaches. For approach A(a)
1 we see that the variation is in general lower than for the other

approaches. Also note that for approach A8 the permutation order adds almost no variation in any case
as the estimated P -value will vary heavily even when keeping the permutation order fixed. This is due
to the construction of the approach where random samples from the null hypothesis copula are drawn in
every computation of the statistic, inducing large variation.

5. Discussion and recommendations

An overview of six copula g-o-f approaches was given, along with the proposal of three new approaches.
A large Monte Carlo study was presented, examining the nominal levels and the power against some fixed
alternatives under several combinations of problem dimension, sample size and dependence. Finally we
investigated what effect the permutation order has in the Rosenblatt transformation.

Sections 4.1.1-4.1.5 summarize the findings of the Monte Carlo study and provides recommendations
to which approach to use in each case. In general we observe increasing power with dimension, sample size
and dependence. While no approach strictly dominates the others in terms of power, approaches A2, A4

and in particular approach A(b)
9 perform very well, the latter being the overall best performing approach.

However, when testing the Gaussian hypothesis against heavy tails, the otherwise poor approach A1
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Table 2. Estimated mean P -values (mean of d! permutations) for approaches based on Rosenblatt’s transformation.
In parentheses the standard deviation over all permutations. All quoted values are averaged over 1000 simulations.

H0 H1 A(a)
1 A(b)

1 A3 A8

Gaussian Gaussian 0.514 (0.000) 0.520 (0.263) 0.513 (0.287) 0.510 (0.290)
Clayton 0.501 (0.000) 0.480 (0.239) 0.021 (0.038) 0.205 (0.201)
Gumbel 0.479 (0.000) 0.460 (0.237) 0.549 (0.294) 0.294 (0.247)
Frank 0.415 (0.000) 0.419 (0.232) 0.535 (0.311) 0.428 (0.287)

Clayton Gaussian 0.003 (0.002) 0.008 (0.015) 0.312 (0.187) 0.248 (0.237)
Clayton 0.520 (0.159) 0.535 (0.263) 0.519 (0.269) 0.501 (0.283)
Gumbel 0.002 (0.002) 0.016 (0.024) 0.370 (0.222) 0.103 (0.139)
Frank 0.008 (0.004) 0.040 (0.051) 0.424 (0.226) 0.265 (0.242)

Gumbel Gaussian 0.082 (0.027) 0.095 (0.118) 0.109 (0.100) 0.390 (0.279)
Clayton 0.035 (0.012) 0.214 (0.181) 0.000 (0.001) 0.101 (0.129)
Gumbel 0.533 (0.110) 0.533 (0.270) 0.528 (0.264) 0.506 (0.287)
Frank 0.113 (0.034) 0.340 (0.239) 0.417 (0.246) 0.463 (0.286)

Frank Gaussian 0.242 (0.102) 0.129 (0.152) 0.104 (0.086) 0.380 (0.274)
Clayton 0.536 (0.153) 0.400 (0.248) 0.000 (0.001) 0.173 (0.184)
Gumbel 0.396 (0.135) 0.492 (0.265) 0.325 (0.227) 0.365 (0.267)
Frank 0.509 (0.151) 0.508 (0.272) 0.506 (0.245) 0.486 (0.281)

Note: Applied to samples of size n = 100 for d = 5 dimensional copulae with dependence parameter τ = 0.5.

Table 3. Estimated mean P -value (mean of d! separate estimations based on the same data set) for approaches
based on Rosenblatt’s transformation. In parentheses the standard deviation over all permutations is given. All
quoted values are averaged over 1000 simulations.

H0 H1 A(a)
1 A(b)

1 A3 A8

Gaussian Gaussian 0.514 (0.000) 0.530 (0.057) 0.523 (0.000) 0.510 (0.284)
Clayton 0.501 (0.000) 0.483 (0.056) 0.021 (0.000) 0.205 (0.194)
Gumbel 0.479 (0.000) 0.458 (0.052) 0.559 (0.000) 0.294 (0.239)
Frank 0.415 (0.000) 0.416 (0.048) 0.551 (0.000) 0.432 (0.282)

Clayton Gaussian 0.002 (0.000) 0.008 (0.003) 0.318 (0.000) 0.250 (0.216)
Clayton 0.517 (0.000) 0.535 (0.056) 0.524 (0.000) 0.501 (0.275)
Gumbel 0.002 (0.000) 0.013 (0.003) 0.382 (0.000) 0.105 (0.125)
Frank 0.008 (0.000) 0.038 (0.007) 0.436 (0.000) 0.262 (0.218)

Gumbel Gaussian 0.080 (0.000) 0.089 (0.023) 0.104 (0.000) 0.390 (0.268)
Clayton 0.036 (0.000) 0.205 (0.036) 0.000 (0.000) 0.100 (0.123)
Gumbel 0.527 (0.000) 0.531 (0.061) 0.532 (0.000) 0.508 (0.281)
Frank 0.112 (0.000) 0.342 (0.050) 0.421 (0.000) 0.461 (0.278)

Frank Gaussian 0.240 (0.000) 0.129 (0.031) 0.109 (0.000) 0.381 (0.263)
Clayton 0.541 (0.000) 0.395 (0.055) 0.000 (0.000) 0.170 (0.174)
Gumbel 0.391 (0.000) 0.489 (0.059) 0.320 (0.000) 0.366 (0.257)
Frank 0.502 (0.000) 0.510 (0.063) 0.501 (0.000) 0.485 (0.274)

Note: Applied to samples of size n = 100 for d = 5 dimensional copulae with dependence parameter τ = 0.5.
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performs very well for high dimensions and large sample sizes. To decide which approaches to consider,
a preliminary test of ellipticity (see e.g. Huffera and Park (2007)) may also be helpful. The strong

performance of approach A(b)
9 is very interesting and further research into the properties and power of

this and other average approaches should be carried out.
When doing model evaluation, it is recommended to also examine various diagnostic tests such as

g-o-f plots, e.g. plotting S4(w) with simulated null hypothesis confidence bands as done in Genest et al.
(2006a). This may give valuable information on the fit of a copula. However, there is still an unsatisfied
need for intuitive and informative diagnostic plots. Ideally such a plot should show, in some way and
in case of rejection by the formal tests, which variable (i.e. which dimension) and/or which samples
causes the rejection. Is it actually a deviation in the dependence structure between the variables or is
the rejection due to some extreme samples? More research is needed on this topic.

Next, results were reported on the variation of the P -value estimates due to permutation order for
approaches based on Rosenblatt’s transformation. In general, one does not want a statistical testing
procedure to give different values when running it several times on the same data set. However, for
some of the approaches based on Rosenblatt’s transformation, the estimated P -value will be different
depending on which permuation order that is chosen for the variables. The practical consequence of this
variation decreases as the P -value estimates approach critical/rejection levels. Hence, the author does
not believe that the permutation effect is something to worry about. Also, as long as the permutation
order is chosen in a random fashion, the results are not influenced in any particular direction.

The results concerning the permutation of variables also point in direction of important future re-
search. The variation of P -value estimates also depends on the bootstrap parameters M and Nb. These
parameters are usually, in a rather arbitrary way, set to what is believed to be large values. This is also
the case in this paper. However, there has been no study of the effect that these choices may have on the
power, and even more importantly the nominal levels of an approach. Originally, in the power studies
of Section 4.1, a double bootstrap parameter Nb = 2500 was chosen for all combinations of dimension,
sample size, dependence and alternative copula. However, for dimension d = 8 we observed some peculiar
results, e.g. decreasing power as sample size increased. These peculiarities vanished when increasing Nb

to 5000 for dimension d = 8. Choosing appropriately large values for these parameters and thus achieving
proper nominal levels is crucial for any study and/or application of these g-o-f approaches. Hence, a study
of the effects of these parameters and required minimum values would be highly valuable.

The computational aspect also deserves some attention. An important quality of approaches based
on Rosenblatt’s transform is computational efficiency. Approaches A2, A4 and A5 need computation-
ally intensive double parametric bootstrap procedures to estimate P -values in some cases (e.g. for the
elliptical copulae, in particular for higher dimensions and large sample sizes). Approaches based on
Rosenblatt’s transformation do not, in general, need this double bootstrap step, since after Rosenblatt’s
transformation, the null hypothesis is always the independence copula.

Finally, a word of warning. As emphasized in Genest et al. (2008), the asymptotics of several of the
procedures presented here are not known. Hence, one cannot know for sure whether a bootstrap procedure
will converge in every case. However, all the results so far on the performance of the proposed approaches
and bootstrap procedures are comforting and strongly indicate the validity of the test procedures. Keep
in mind though, the original approach and test procedure proposed by Breymann et al. (2003), which
showed terrible performance in the study of Dobrić and Schmid (2007). This shows how wrong it can
all go if our test procedure is not valid. Approaches A2 and A4, that turned out to be among the best
in our study, both have known asymptotics and the bootstrap procedures for these approaches are well
established from Quessy (2005), Genest et al. (2006a) and Genest and Rémillard (2008).
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A. Proof of permutation invariance of A(a)
1 under Gaussian copula null hypothesis

To prove that approach A(a)
1 is permutatoin invariant under the Gaussian copula null hypothesis, let us

first look at how Rosenblatt’s transformation is carried out. For the Gaussian copula null hypothesis,
this transformation is easily computed using the Cholesky decomposition of the covariance matrix. Let
X ∼ N (µ,Σ) be a d-dimensional vector, where µ = E(X) and Σ is the d× d positive definite covariance
matrix.

Since Σ is positive definite it can be written as Σ = A
T
A, where A is a lower triangular matrix

and A
T denotes its transpose. Next, it is well known that X can be expressed as X = µ + A

T
Y where

Y ∼ N (0, I) and I is the d-dimensional identity matrix. I.e. Y is a vector of d i.i.d. standard normally
distributed variables. Solving for Y gives Y = (AT )−1(X − µ). We now see that the vector V = Φ(Y)
is i.i.d. U(0, 1)d under the Gaussian null hypothesis.

For approach A(a)
1 we now need to compute W1 =

∑d
i=1 Φ−1(Vi)

2 =
∑d

i=1 Y 2
i = Y

T
Y. We now pro-

ceed with the bivariate setting for simplicity but the proof can easily be extended to arbitrary dimension
d. Consider the Cholesky decomposition of the covariance matrix Σ = A

T
A in detail:

Σ
1 =

(
σ2

1 σ12

σ12 σ2
2

)
=

(
a11 a12

0 a22

) (
a11 0
a12 a22

)
=

(
a2
11 + a2

12 a12a22

a12a22 a2
22

)
,

where the superscript 1 in Σ
1 denotes permutation order 1. We see now that

a11 =
√

σ2
1σ2

2 − σ2
12/σ2, a12 = σ12/σ2 and a22 = σ2. Next, we see that

(AT )−1 =

( 1
a11

− a12

a11a22

0 1
a22

)

and that

Y = (AT )−1(X− µ) =

( 1
a11

(X1 − µ1) − a12

a11a22
(X2 − µ2)

1
a22

(X2 − µ2)

)
.

Now to compute W 1
1 = Y

T
Y, superscript 1 denoting permutation order 1, we get

W 1
1 =

(X1 − µ1)
2

a2
11

+
a2
12

a2
11a

2
22

(X2 − µ2)
2 − 2a12

a2
11a22

(X1 − µ1)(X2 − µ2) +
(X2 − µ2)

2

a2
22

=
(X1 − µ1)

2σ2
2 + (X2 − µ2)

2σ2
1 − 2(X1 − µ1)(X2 − µ2)σ12

σ2
1σ2

2 − σ2
12

by inserting σ’s for the a’s.

By doing the same exercise with permutation order 2 we first get

Σ
2 =

(
σ2

2 σ12

σ12 σ2
1

)

and a11 =
√

σ2
1σ2

2 − σ2
12/σ1, a12 = σ12/σ1 and a22 = σ1. Next, in the same manner as above, it is easily

shown that

W 2
1 =

(X2 − µ2)
2σ2

1 + (X1 − µ1)
2σ2

2 − 2(X1 − µ1)(X2 − µ2)σ12

σ2
1σ2

2 − σ2
12

= W 1
1 .

Hence we have shown that approach A(a)
1 is permutation invariant under the Gaussian copula null hy-

pothesis. This is not so for other weight functions or other null hypothesis copulae. The invariance stems
from the use of Φ−1 which cancels out with the Φ in V = Φ(Y) and the squaring Φ(Vi)

2.
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B. Derivation of a Cram ér-von Mises statistic

Consider the Cramér–von Mises (CvM) statistic

T = n

∫ 1

0

{F̂ (w) − F (w)}2dF (w),

where F̂ (w) = 1
n+1

∑n
j=1 I(Xj ≤ t) is the empirical distribution function. Given a random sample

(x1, . . . , xn), the empirical version T̂ of the CvM statistic can be derived as follows.

T̂ =n

∫ 1

0

{F̂ (w) − F (w)}2dF (w)

=n

∫ 1

0

F̂ (w)2dF (w) − 2n

∫ 1

0

F̂ (w)F (w)dF (w) + n

∫ 1

0

F (w)2dF (w).

Since F̂ (w) is constant and equal to F̂ (j/(n + 1)) between j/(n + 1) and (j + 1)/(n + 1) for j = 1, . . . , n,
the first two integrals can be split into n smaller integrals:

T̂ =n

n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)

F̂

(
j

n + 1

)2

dF (w)

−2n

n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)

F̂

(
j

n + 1

)
F (w)dF (w) +

n

3

[
F (w)3

]1

0

=
n

3
+ n

n∑

j=1

F̂

(
j

n + 1

)2 {
F

(
j + 1

n + 1

)
− F

(
j

n + 1

)}

−n

n∑

j=1

F̂

(
j

n + 1

){
F

(
j + 1

n + 1

)2

− F

(
j

n + 1

)2
}

.

For approach A1 the test observator S1(w) is U [0, 1] under the null hypothesis. Hence F (w) = w and we

easily see that T̂ reduces to

T̂ ′ =
n

3
+

n

n + 1

n∑

j=1

F̂

(
j

n + 1

)2

− n

(n + 1)2

n∑

j=1

(2j + 1)F̂

(
j

n + 1

)
.

C. Power results from numerical experiments
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Table C.4. Percentage of rejections (at 5% significance level) of the Gaussian copula.

d n τ True copula A
(a)
1 A

(b)
1 A2 A3 A4 A5 A6 A7 A8 A

(a)
9 A

(b)
9

2 100 0.2 Gaussian 5.3 5.0 5.0 4.6 5.4 5.7 – 4.7 5.2 5.0 5.1

Student (ν = 6) 0.9 4.2 7.0 8.8 6.1 5.3 – 5.6 6.0 3.3 6.4

Clayton 2.6 5.0 19.7 19.6 19.9 15.6 – 7.1 6.9 10.6 24.0

Gumbel 1.9 4.6 10.7 3.6 11.6 8.4 – 6.2 5.9 4.9 9.7

Frank 3.4 3.2 6.0 7.4 6.0 6.2 – 5.4 5.5 3.4 6.1

0.4 Gaussian 5.2 5.0 4.7 5.4 4.8 4.7 – 5.0 4.7 5.0 4.9

Student (ν = 6) 1.3 2.4 5.9 11.6 4.8 3.9 – 5.3 5.8 2.3 6.4

Clayton 1.1 2.5 57.4 59.6 49.7 33.7 – 14.9 15.8 22.2 63.9

Gumbel 1.3 2.6 19.1 5.0 18.5 8.2 – 7.0 7.9 4.1 16.2

Frank 0.8 1.2 10.6 11.6 10.1 8.9 – 6.1 6.3 1.5 11.8

500 0.2 Gaussian 4.7 4.9 5.2 4.8 5.2 5.1 – 5.1 4.9 4.9 5.0

Student (ν = 6) 19.5 16.9 10.0 16.9 8.4 8.5 – 10.3 9.8 21.4 10.0

Clayton 2.0 5.8 72.5 71.3 71.9 57.2 – 23.8 20.3 56.5 79.5

Gumbel 2.5 6.9 33.2 8.5 33.9 25.8 – 12.3 11.1 21.2 34.3

Frank 2.2 2.9 11.4 21.9 11.1 9.9 – 7.6 8.1 5.8 14.5

0.4 Gaussian 5.0 5.0 4.6 5.4 4.9 4.8 – 4.9 5.5 5.1 4.8

Student (ν = 6) 23.8 12.5 8.2 30.5 6.6 6.9 – 10.1 12.6 20.6 12.0

Clayton 6.8 4.3 99.8 100 99.6 96.2 – 78.1 84.3 99.0 99.9

Gumbel 8.8 6.0 65.3 18.9 62.9 39.8 – 26.4 32.4 42.3 65.3

Frank 15.1 12.2 36.9 60.7 33.4 26.4 – 17.0 20.6 36.9 52.1

4 100 0.2 Gaussian 4.8 5.0 4.6 4.8 4.8 5.3 – 5.6 5.0 5.0 4.9

Student (ν = 6) 5.1 6.5 8.9 15.4 8.5 7.0 – 6.7 6.6 7.5 9.7

Clayton 1.1 5.0 45.6 30.5 52.5 19.2 – 9.4 7.0 20.2 55.9

Gumbel 1.2 3.1 12.8 0.7 42.5 56.4 – 13.9 8.8 13.2 34.9

Frank 2.0 1.4 1.8 3.0 12.2 19.6 – 7.5 6.8 2.0 8.4

0.4 Gaussian 4.5 4.8 5.2 5.4 5.1 5.1 – 4.9 5.3 4.9 5.3

Student (ν = 6) 9.2 3.7 8.6 24.4 6.1 5.3 – 6.9 7.1 7.5 8.1

Clayton 1.1 1.8 90.8 80.4 84.0 45.6 – 27.9 18.3 48.8 90.1

Gumbel 1.5 1.7 41.0 3.6 52.0 48.7 – 25.8 15.4 17.1 50.1

Frank 1.6 2.2 10.1 7.3 23.6 20.6 – 12.6 8.3 5.6 21.2

500 0.2 Gaussian 5.8 5.3 5.3 5.0 4.8 4.9 – 5.0 5.5 4.9 4.7

Student (ν = 6) 98.5 71.8 16.5 47.1 11.2 12.6 – 13.6 15.0 96.5 15.7

Clayton 4.3 7.7 99.0 94.4 98.0 88.4 – 39.3 22.2 94.6 99.2

Gumbel 8.0 5.9 84.2 48.0 97.7 98.5 – 70.3 34.7 92.3 98.0

Frank 3.6 6.6 25.4 5.0 64.3 66.2 – 20.3 17.2 39.1 63.8

0.4 Gaussian 4.7 4.7 4.8 4.9 4.7 4.8 – 5.1 5.0 4.4 4.6

Student (ν = 6) 98.1 67.5 11.6 72.1 8.0 8.8 – 16.4 18.7 94.0 13.8

Clayton 44.3 13.2 100 100 100 99.9 – 97.2 91.2 100 100

Gumbel 63.2 34.7 98.9 70.1 99.6 98.1 – 95.5 77.4 99.4 99.8

Frank 79.3 74.2 73.2 19.5 88.6 74.5 – 61.2 40.7 97.4 90.6

8 100 0.2 Gaussian 5.0 5.2 5.9 4.7 5.8 5.2 – 5.3 5.2 5.4 5.7

Student (ν = 6) 40.4 16.4 9.8 15.0 12.3 7.7 – 7.9 6.9 35.9 12.4

Clayton 0.7 4.1 48.7 24.3 66.0 1.2 – 11.8 6.6 19.5 65.5

Gumbel 0.6 1.7 22.0 2.3 61.5 98.3 – 56.9 13.8 14.0 56.1

Frank 0.4 0.6 3.8 1.3 7.3 56.0 – 14.4 7.2 0.6 4.7

0.4 Gaussian 5.1 5.2 5.0 4.6 5.3 5.7 – 5.5 5.1 5.3 5.1

Student (ν = 6) 51.7 16.1 8.3 17.6 7.4 6.1 – 8.0 8.5 39.2 7.8

Clayton 1.6 2.4 96.6 49.2 93.3 28.1 – 40.4 19.9 59.9 95.0

Gumbel 16.2 10.1 70.5 2.7 78.4 92.8 – 67.9 28.1 52.7 78.6

Frank 4.8 8.3 19.6 2.9 28.7 23.9 – 26.7 7.5 14.6 25.7

500 0.2 Gaussian 5.5 4.8 4.4 5.1 4.8 5.4 – 5.2 5.1 4.6 4.8

Student (ν = 6) 100 99.9 23.7 56.4 19.1 11.8 – 21.7 20.9 100 21.3

Clayton 11.8 12.9 100 74.3 99.7 84.8 – 50.5 13.6 97.2 99.9

Gumbel 30.0 13.4 100 71.7 100 100 – 100 63.0 99.9 100

Frank 22.9 38.3 99.8 10.5 98.4 99.9 – 69.6 19.4 90.7 99.8

0.4 Gaussian 4.9 5.4 4.9 5.2 5.4 5.1 – 4.7 5.9 5.1 5.2

Student (ν = 6) 100 99.8 16.9 71.5 12.2 10.6 – 21.4 32.0 100 13.7

Clayton 78.0 52.6 100 99.8 100 100 – 99.2 81.5 100 100

Gumbel 100 98.7 100 33.9 100 100 – 100 94.7 100 100

Frank 99.5 99.5 100 1.9 99.8 95.6 – 97.3 37.7 100 100

Note: Numbers in italics are nominal levels and should correspond to the size of 5%. Numbers in bold

indicate the best performing approach.
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Table C.5. Percentage of rejections (at 5% significance level) of the Student copula.

d n τ True copula A
(a)
1 A

(b)
1 A2 A3 A4 A5 A6 A7 A8 A

(a)
9 A

(b)
9

2 100 0.2 Gaussian 5.7 5.4 4.9 4.0 5.0 5.2 – 5.6 5.3 5.6 4.8

Student (ν = 6) 4.4 4.6 4.8 4.1 5.1 4.8 – 5.1 5.0 4.6 4.8

Clayton 4.8 5.3 19.2 11.0 20.1 17.2 – 7.3 6.8 15.4 21.3

Gumbel 4.7 5.1 9.2 4.9 10.5 7.0 – 5.9 5.8 7.6 10.1

Frank 4.9 5.4 6.0 4.4 6.6 7.1 – 5.8 5.7 6.5 6.6

0.4 Gaussian 4.7 5.4 4.9 4.0 5.2 5.4 – 5.7 4.9 5.2 4.8

Student (ν = 6) 4.1 4.5 4.2 4.4 4.8 5.1 – 4.9 4.9 4.4 4.4

Clayton 4.2 4.9 55.0 31.7 53.3 41.1 – 15.4 14.8 39.9 57.3

Gumbel 4.4 5.0 17.2 6.1 18.7 9.1 – 7.2 7.4 10.5 17.5

Frank 2.9 3.4 11.8 5.3 12.5 10.5 – 7.5 6.3 6.9 11.6

500 0.2 Gaussian 5.8 5.8 5.1 5.1 5.0 5.6 – 5.8 5.5 6.0 5.3

Student (ν = 6) 5.1 5.1 4.5 4.5 4.5 5.3 – 5.1 5.2 4.8 4.6

Clayton 5.6 4.8 69.9 60.4 72.4 61.3 – 22.0 19.9 65.7 77.5

Gumbel 5.2 5.3 28.6 18.6 30.0 19.7 – 11.0 10.0 23.5 33.2

Frank 5.2 6.3 12.3 8.3 12.7 12.6 – 7.4 7.8 11.6 13.4

0.4 Gaussian 5.6 5.2 4.5 5.3 5.0 5.5 – 5.2 4.9 5.4 5.0

Student (ν = 6) 4.9 4.6 5.3 4.4 4.5 4.8 – 4.7 5.0 4.7 4.6

Clayton 6.4 7.0 99.8 99.6 99.6 97.7 – 74.6 78.4 99.5 99.9

Gumbel 4.5 5.1 61.7 40.0 61.2 34.1 – 22.4 24.1 49.2 68.3

Frank 11.6 5.9 41.2 15.4 40.4 31.7 – 17.2 14.2 36.0 44.8

Note: Numbers in italics are nominal levels and should correspond to the size of 5%. Numbers in bold

indicate the best performing approach.



Copula goodness-of-fit testing 23

Table C.6. Percentage of rejections (at 5% significance level) of the Clayton copula.

d n τ True copula A
(a)
1 A

(b)
1 A2 A3 A4 A5 A6 A7 A8 A

(a)
9 A

(b)
9

2 100 0.2 Gaussian 7.5 7.3 21.3 6.6 23.2 14.5 20.9 7.3 6.9 20.8 22.4

Student (ν = 6) 8.0 8.5 23.8 8.4 24.1 16.3 15.9 7.5 7.0 21.0 23.7

Clayton 4.9 5.1 5.0 5.2 5.0 5.2 4.5 5.2 5.2 5.0 5.1

Gumbel 6.2 9.4 46.7 13.0 47.3 32.3 40.4 12.4 11.1 41.2 47.1

Frank 7.0 6.9 24.6 6.4 27.1 16.3 30.3 8.6 7.4 25.1 25.8

0.4 Gaussian 24.0 26.7 58.9 26.4 58.2 33.7 62.1 16.6 15.3 66.5 60.6

Student (ν = 6) 13.4 19.0 60.6 16.0 58.4 35.1 53.6 15.4 13.7 58.2 57.3

Clayton 4.4 4.8 4.8 5.4 4.9 4.9 4.8 4.7 4.8 4.6 4.8

Gumbel 29.7 38.9 91.6 41.2 90.6 70.1 90.2 34.9 31.7 92.0 90.2

Frank 24.1 19.2 64.8 24.2 66.2 35.6 84.3 19.3 16.5 77.0 65.6

500 0.2 Gaussian 20.6 13.3 78.7 44.8 70.2 52.9 85.9 24.0 20.5 68.5 75.3

Student (ν = 6) 26.9 23.3 82.1 33.4 73.7 64.8 68.5 26.1 22.2 76.1 77.6

Clayton 5.2 5.1 5.0 4.8 5.1 5.4 5.1 5.3 4.5 4.8 5.2

Gumbel 12.6 23.2 99.2 84.9 97.9 94.0 99.0 60.1 52.0 97.2 98.6

Frank 18.8 9.0 86.6 42.9 82.2 63.4 97.6 30.4 22.7 78.3 84.8

0.4 Gaussian 94.8 85.6 100 99.5 99.7 95.5 100 77.7 82.3 99.9 99.9

Student (ν = 6) 65.3 71.4 99.9 89.7 99.6 97.3 99.8 74.7 74.9 99.8 99.8

Clayton 5.3 5.1 5.0 5.2 4.7 4.8 4.9 4.7 4.4 5.0 4.7

Gumbel 98.4 97.8 100 100 100 100 100 99.4 99.5 100 100

Frank 97.8 69.9 100 99.4 99.9 96.7 100 84.6 86.8 100 100

4 100 0.2 Gaussian 10.8 10.6 37.4 3.2 38.5 39.1 49.8 10.6 6.5 49.2 37.9

Student (ν = 6) 27.1 21.3 48.4 17.8 37.7 42.2 37.7 10.1 7.3 57.2 42.5

Clayton 4.7 5.1 5.3 5.6 5.2 5.1 4.6 6.3 4.7 5.0 5.2

Gumbel 8.8 12.0 64.4 3.0 91.1 94.1 81.5 31.9 14.0 88.4 88.6

Frank 7.7 6.5 36.0 1.4 74.7 68.9 73.0 15.1 7.2 72.8 68.8

0.4 Gaussian 78.3 65.7 89.8 3.0 83.0 73.9 91.6 31.0 16.7 95.2 84.3

Student (ν = 6) 53.9 45.7 92.9 6.1 82.6 76.0 86.2 29.9 15.8 92.2 85.6

Clayton 5.2 4.7 5.6 5.5 5.2 5.1 4.5 5.3 4.9 5.1 5.3

Gumbel 79.1 62.1 99.3 4.9 99.8 99.8 99.8 80.8 40.1 99.9 99.8

Frank 68.7 37.9 91.4 3.2 97.0 84.8 99.6 52.4 15.1 99.3 96.3

500 0.2 Gaussian 89.6 38.1 99.4 18.1 97.0 91.2 99.9 38.8 23.0 99.4 98.0

Student (ν = 6) 93.7 76.9 99.9 89.7 95.8 94.5 97.9 44.1 30.8 100 98.7

Clayton 4.8 4.7 5.2 5.6 5.6 4.7 5.0 4.8 5.3 5.1 5.6

Gumbel 71.1 37.8 100 80.3 100 100 100 97.8 83.4 100 100

Frank 82.6 11.8 99.8 14.5 100 99.9 100 67.9 24.8 100 100

0.4 Gaussian 100 100 100 99.7 100 99.9 100 97.4 95.5 100 100

Student (ν = 6) 100 99.8 100 80.0 100 100 100 96.9 90.1 100 100

Clayton 4.9 5.2 5.3 5.7 5.6 5.2 5.6 4.8 5.5 5.1 5.4

Gumbel 100 100 100 100 100 100 100 100 100 100 100

Frank 100 99.0 100 99.9 100 100 100 100 93.6 100 100

8 100 0.2 Gaussian 14.3 12.6 29.9 9.9 21.4 53.5 82.6 8.1 6.6 74.2 22.3

Student (ν = 6) 57.8 61.0 44.3 40.9 20.2 54.3 65.9 9.3 8.6 85.5 24.4

Clayton 5.5 5.0 5.2 5.5 5.6 5.4 4.3 4.7 5.2 5.1 5.5

Gumbel 7.6 10.5 63.2 52.6 91.9 100 98.0 68.7 26.5 97.0 90.8

Frank 3.2 6.0 16.6 4.2 74.8 96.5 96.7 20.4 6.3 93.4 68.9

0.4 Gaussian 97.5 91.7 96.9 2.5 87.1 89.0 98.2 34.8 10.9 99.1 90.2

Student (ν = 6) 86.3 80.5 98.4 29.5 86.1 89.4 96.0 32.4 10.7 97.7 91.4

Clayton 5.7 5.4 4.8 5.1 4.7 4.8 4.6 5.3 5.0 4.7 4.7

Gumbel 93.0 82.2 99.8 19.9 100 100 100 97.3 43.4 100 100

Frank 85.2 62.8 93.7 0.6 99.6 97.7 100 76.5 8.1 100 99.6

500 0.2 Gaussian 100 71.6 100 24.9 98.9 97.4 100 41.8 17.0 100 99.5

Student (ν = 6) 100 100 100 99.3 96.7 98.1 100 50.8 32.0 100 99.3

Clayton 5.3 4.8 5.0 4.8 4.9 5.3 4.6 5.3 5.4 5.4 4.7

Gumbel 98.3 40.7 100 96.6 100 100 100 100 96.8 100 100

Frank 99.9 11.0 100 3.7 100 100 100 92.8 15.5 100 100

0.4 Gaussian 100 100 100 96.1 100 100 100 98.7 84.4 100 100

Student (ν = 6) 100 100 100 93.2 100 100 100 98.7 78.1 100 100

Clayton 4.5 4.8 4.8 4.9 4.9 5.2 5.1 5.5 4.9 4.8 4.8

Gumbel 100 100 100 88.5 100 100 100 100 100 100 100

Frank 100 100 100 69.5 100 100 100 100 76.0 100 100

Note: Numbers in italics are nominal levels and should correspond to the size of 5%. Numbers in bold

indicate the best performing approach.
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Table C.7. Percentage of rejections (at 5% significance level) of the Gumbel copula.

d n τ True copula A
(a)
1 A

(b)
1 A2 A3 A4 A5 A6 A7 A8 A

(a)
9 A

(b)
9

2 100 0.2 Gaussian 7.7 6.6 9.9 7.3 9.6 9.6 – 6.4 6.6 10.2 9.8

Student (ν = 6) 7.1 6.2 11.2 9.8 9.0 7.6 – 5.9 6.2 8.8 10.4

Clayton 5.9 6.5 45.8 31.1 44.0 35.1 – 12.3 10.8 33.1 47.5

Gumbel 5.3 5.1 5.1 4.9 5.1 5.1 – 5.1 5.3 5.1 4.9

Frank 6.7 5.2 12.1 8.0 11.3 13.3 – 7.4 6.8 10.4 11.7

0.4 Gaussian 11.4 11.2 17.5 8.9 16.4 13.7 – 8.1 7.2 19.1 17.6

Student (ν = 6) 5.8 6.2 20.2 15.2 16.1 11.3 – 7.5 6.7 13.9 19.7

Clayton 8.1 14.0 92.6 75.4 89.8 75.3 – 34.7 31.4 83.4 92.6

Gumbel 4.8 4.6 4.8 5.1 4.9 4.7 – 4.7 5.2 4.8 5.0

Frank 8.1 7.1 28.7 9.4 24.8 24.3 – 10.3 9.0 20.9 25.7

500 0.2 Gaussian 19.9 9.8 37.0 23.9 29.2 26.9 – 11.7 10.2 31.4 33.1

Student (ν = 6) 16.6 11.6 39.1 33.7 25.2 17.3 – 11.8 10.2 27.7 30.8

Clayton 8.4 10.3 99.6 98.5 98.5 95.9 – 57.5 51.5 97.1 99.3

Gumbel 4.7 4.6 5.1 4.8 4.6 5.1 – 5.0 4.6 4.6 4.6

Frank 16.0 7.4 53.9 30.7 38.5 42.6 – 16.2 12.7 37.1 44.3

0.4 Gaussian 49.9 32.4 74.1 38.4 61.6 46.8 – 25.4 28.9 73.8 67.7

Student (ν = 6) 9.0 10.8 74.1 56.7 57.3 36.0 – 20.9 21.1 53.0 68.4

Clayton 43.6 57.8 100 100 100 100 – 99.3 99.6 100 100

Gumbel 5.4 4.9 5.2 5.5 5.0 5.0 – 4.8 5.2 5.0 4.9

Frank 45.3 13.8 95.5 47.8 85.1 82.2 – 44.4 42.1 86.2 89.2

4 100 0.2 Gaussian 6.8 13.0 54.7 43.4 51.1 24.0 – 14.9 7.5 41.6 57.3

Student (ν = 6) 24.9 24.8 56.8 55.7 52.8 21.1 – 13.0 8.8 58.7 60.1

Clayton 3.4 15.1 89.6 85.4 97.1 82.2 – 29.9 10.1 90.6 97.2

Gumbel 5.0 4.9 5.0 4.5 5.0 5.3 – 5.0 5.6 4.8 5.0

Frank 4.6 5.4 22.2 13.1 29.2 30.6 – 12.6 5.5 18.6 30.0

0.4 Gaussian 29.7 36.6 66.7 44.0 59.9 33.7 – 28.8 9.2 70.5 65.0

Student (ν = 6) 15.1 22.0 68.0 66.1 60.7 30.2 – 26.2 9.9 60.0 68.9

Clayton 26.8 29.9 99.9 99.1 100 98.8 – 82.4 32.8 99.8 100

Gumbel 5.0 5.0 5.0 5.2 5.1 5.1 – 5.0 5.4 5.5 5.0

Frank 17.8 9.0 51.4 12.5 54.3 56.1 – 26.2 7.3 46.5 53.7

500 0.2 Gaussian 75.9 59.1 99.4 98.5 98.3 96.0 – 68.4 19.5 99.4 99.2

Student (ν = 6) 92.0 88.5 99.1 99.7 97.7 94.5 – 67.4 27.3 100 99.2

Clayton 34.2 64.9 100 100 100 100 – 98.1 53.3 100 100

Gumbel 4.7 4.8 4.8 4.6 4.7 5.0 – 4.7 4.2 4.6 4.7

Frank 47.7 10.0 86.6 47.5 92.7 98.1 – 58.0 9.8 93.2 94.0

0.4 Gaussian 99.9 98.2 100 99.7 99.6 97.6 – 95.9 54.8 100 99.9

Student (ν = 6) 86.1 91.3 100 100 99.6 97.1 – 93.9 60.2 100 100

Clayton 100 95.7 100 100 100 100 – 100 99.8 100 100

Gumbel 4.7 5.1 4.9 5.3 5.1 4.8 – 4.6 5.1 4.8 5.2

Frank 99.4 31.8 99.9 58.9 99.8 100 – 93.0 23.7 100 99.9

8 100 0.2 Gaussian 1.0 30.0 89.8 73.2 87.1 29.9 – 37.6 6.7 50.0 90.4

Student (ν = 6) 52.3 70.3 89.4 76.6 86.2 30.9 – 36.1 8.3 91.9 89.9

Clayton 0.2 29.9 93.6 95.4 99.8 81.2 – 53.3 8.6 89.3 99.7

Gumbel 5.4 5.1 4.1 4.8 4.9 4.8 – 4.6 5.1 5.1 4.8

Frank 0.3 4.3 14.6 10.3 40.4 19.4 – 28.4 5.5 3.6 36.8

0.4 Gaussian 36.8 68.2 98.1 72.3 90.2 50.3 – 70.1 6.8 93.7 93.7

Student (ν = 6) 45.3 65.7 97.8 83.8 90.8 51.8 – 65.0 11.7 94.1 94.6

Clayton 38.5 45.9 100 99.6 100 99.9 – 98.2 42.0 100 100

Gumbel 5.2 5.1 5.3 5.1 5.3 5.4 – 5.0 5.5 5.2 5.4

Frank 16.0 8.7 54.3 9.6 67.1 63.5 – 53.4 4.9 42.5 66.2

500 0.2 Gaussian 99.9 99.1 100 100 100 100 – 99.2 14.8 100 100

Student (ν = 6) 100 100 100 100 100 100 – 98.9 31.7 100 100

Clayton 79.4 98.9 100 100 100 100 – 100 33.0 100 100

Gumbel 5.1 4.9 4.1 4.8 5.1 5.2 – 4.3 4.8 5.2 5.0

Frank 78.6 18.6 90.1 36.7 99.9 100 – 93.7 7.0 99.2 99.9

0.4 Gaussian 100 100 100 100 100 100 – 100 37.5 100 100

Student (ν = 6) 100 100 100 100 100 100 – 100 67.5 100 100

Clayton 100 99.9 100 100 100 100 – 100 99.7 100 100

Gumbel 5.3 4.9 5.1 5.3 5.2 5.4 – 4.9 5.0 5.2 5.1

Frank 100 48.8 100 35.6 100 100 – 99.8 9.5 100 100

Note: Numbers in italics are nominal levels and should correspond to the size of 5%. Numbers in bold

indicate the best performing approach.
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Table C.8. Percentage of rejections (at 5% significance level) of the Frank copula.

d n τ True copula A
(a)
1 A

(b)
1 A2 A3 A4 A5 A6 A7 A8 A

(a)
9 A

(b)
9

2 100 0.2 Gaussian 5.8 5.5 6.0 7.5 6.9 6.6 – 4.9 5.1 6.2 7.4

Student (ν = 6) 10.6 8.4 8.8 9.9 8.9 7.9 – 6.0 5.7 11.9 10.1

Clayton 5.1 5.3 24.4 21.3 26.2 18.5 – 7.9 7.4 17.4 29.4

Gumbel 5.2 6.0 13.5 8.8 14.2 11.4 – 6.3 6.3 10.0 14.9

Frank 5.8 5.6 5.5 7.3 5.6 5.4 – 5.4 4.8 5.7 5.9

0.4 Gaussian 12.2 9.1 9.4 9.2 9.5 6.8 – 5.6 6.5 13.1 10.7

Student (ν = 6) 8.2 6.4 13.7 10.4 13.3 9.4 – 6.2 7.1 12.0 14.7

Clayton 6.8 5.2 65.4 47.5 62.4 34.6 – 15.9 16.9 46.6 68.2

Gumbel 6.5 6.0 29.1 9.6 26.0 15.7 – 8.4 9.1 18.0 26.6

Frank 5.9 4.8 4.9 6.3 5.2 4.7 – 4.1 5.1 5.3 5.3

500 0.2 Gaussian 7.6 6.7 11.2 15.3 10.3 10.3 – 6.7 7.3 10.3 11.8

Student (ν = 6) 47.8 26.9 28.0 20.5 26.5 25.2 – 12.4 13.4 48.0 29.2

Clayton 7.6 7.1 87.7 81.0 84.2 66.4 – 27.5 27.5 74.3 87.8

Gumbel 11.4 10.3 55.6 31.9 44.5 41.8 – 15.1 15.9 41.1 49.2

Frank 5.5 4.9 4.5 7.2 5.4 5.1 – 4.6 5.4 4.9 5.5

0.4 Gaussian 30.3 23.1 42.5 35.1 32.7 23.2 – 14.0 14.9 47.5 42.2

Student (ν = 6) 20.9 14.5 68.5 28.6 57.1 46.2 – 22.3 21.5 58.9 63.8

Clayton 11.9 9.5 100 99.9 100 97.6 – 83.9 85.2 99.9 100

Gumbel 9.9 12.2 95.2 47.5 85.8 77.3 – 41.7 41.2 81.2 89.9

Frank 6.0 4.8 4.2 6.4 4.7 4.0 – 4.6 5.0 4.9 5.0

4 100 0.2 Gaussian 4.8 9.3 27.6 27.0 24.8 10.3 – 6.9 6.9 18.2 29.8

Student (ν = 6) 44.0 25.9 40.0 41.1 36.8 20.3 – 8.2 7.7 59.2 44.5

Clayton 6.5 8.5 68.0 75.0 87.1 41.9 – 13.2 8.5 71.9 88.4

Gumbel 10.2 5.3 19.6 3.9 33.8 50.5 – 11.2 7.2 27.3 31.1

Frank 5.5 5.3 4.5 4.9 4.8 4.7 – 5.2 5.1 5.2 4.8

0.4 Gaussian 14.1 29.4 30.1 33.1 31.3 18.4 – 10.8 7.6 43.9 37.3

Student (ν = 6) 18.5 16.7 47.4 53.0 43.3 29.2 – 13.0 9.3 49.8 53.6

Clayton 4.5 9.8 95.5 97.5 98.0 62.1 – 47.1 19.4 93.8 98.8

Gumbel 9.7 5.1 58.0 7.2 54.7 65.3 – 21.3 9.1 44.0 56.6

Frank 5.6 4.8 5.4 5.4 5.3 5.7 – 5.2 4.6 5.4 5.5

500 0.2 Gaussian 13.4 38.1 86.1 79.1 66.0 57.7 – 19.8 15.9 77.3 76.2

Student (ν = 6) 99.0 90.2 97.4 95.7 88.3 88.7 – 34.3 27.9 99.9 95.2

Clayton 11.2 31.1 100 100 100 99.7 – 66.7 37.3 100 100

Gumbel 26.6 7.8 84.7 22.0 91.9 97.5 – 56.8 25.5 91.2 92.5

Frank 5.6 5.4 5.1 4.9 4.4 5.6 – 4.9 5.0 5.8 4.5

0.4 Gaussian 78.9 93.7 98.3 95.3 90.9 74.2 – 58.9 40.3 99.9 95.7

Student (ν = 6) 72.0 78.8 99.9 99.6 98.6 95.8 – 72.2 52.2 100 99.6

Clayton 8.0 36.9 100 100 100 100 – 99.9 96.5 100 100

Gumbel 35.0 6.9 99.9 51.9 99.7 99.9 – 91.5 54.4 99.7 99.8

Frank 4.9 5.1 5.3 6.0 5.0 5.1 – 5.7 4.8 5.0 5.3

8 100 0.2 Gaussian 1.0 20.5 81.2 68.2 60.8 12.5 – 11.2 6.3 26.9 72.6

Student (ν = 6) 75.6 68.9 84.6 73.1 69.2 27.1 – 12.6 7.9 94.3 79.5

Clayton 2.6 15.5 83.6 94.6 97.7 36.5 – 22.7 8.6 79.5 97.4

Gumbel 20.3 5.0 35.7 22.2 63.2 87.7 – 39.8 7.8 43.7 60.4

Frank 4.5 5.1 4.7 5.2 4.8 4.8 – 5.5 5.1 4.9 4.8

0.4 Gaussian 11.7 62.0 93.6 81.4 60.1 24.2 – 25.7 8.2 78.1 73.4

Student (ν = 6) 47.8 55.9 95.2 91.3 74.1 38.4 – 28.3 10.8 90.9 86.2

Clayton 1.3 18.1 98.7 99.8 99.9 69.4 – 81.0 39.4 98.5 99.9

Gumbel 26.5 7.9 72.8 29.5 74.7 93.7 – 50.3 11.0 67.6 77.0

Frank 5.0 4.8 4.6 5.2 5.1 5.5 – 4.7 4.4 4.9 5.0

500 0.2 Gaussian 47.7 94.1 100 100 99.8 99.0 – 66.6 15.1 100 100

Student (ν = 6) 100 100 100 100 100 100 – 77.4 32.3 100 100

Clayton 6.3 82.8 100 100 100 100 – 93.7 35.8 100 100

Gumbel 71.4 6.0 95.9 74.3 100 100 – 98.5 34.1 98.9 100

Frank 4.5 4.8 4.3 5.1 5.2 5.3 – 5.6 5.3 5.5 5.1

0.4 Gaussian 100 100 100 100 99.9 93.1 – 97.6 37.9 100 100

Student (ν = 6) 100 100 100 100 100 99.7 – 98.6 61.5 100 100

Clayton 8.3 83.7 100 100 100 100 – 100 99.6 100 100

Gumbel 93.3 16.3 100 95.1 100 100 – 99.9 62.5 100 100

Frank 5.0 4.6 4.7 4.9 4.6 4.2 – 5.3 4.7 4.4 4.6

Note: Numbers in italics are nominal levels and should correspond to the size of 5%. Numbers in bold

indicate the best performing approach.


