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Preface
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The thesis contains a brief introductory chapter and six papers. The introductory
chapter was prepared for this thesis exclusively whereas the papers have all been submitted
for publication. The introductory chapter and each paper is self-contained and can be
read independently from the rest. The first page of each of the six papers contain the
title, authors and their affiliation, an abstract, keywords and details of publication. Page
numbers within the papers are given in parenthesis at the bottom of each page, underlining
that the papers have been prepared and written separately. To emphasize the unity of the
thesis, papers are also numbered consecutively at the top of each page and the list of
references are collected in one bibliography placed at the end of the thesis.





Summary

This thesis consists of an introductory chapter and six papers. The papers can be grouped
in two parts. The first part covers deafult prediction models and this is the topic of papers
I and II. The second part covers dependency modelling using copulas, in particular copula
goodness-of-fit testing. This is the topic of papers III - VI. In the following we summarize
the abstracts, keywords and publication status of each paper. In cases of multiple authors
the roles of each author is described.

Paper I: Bankruptcy prediction by generalized additive models.

Author(s): Daniel Berg

Abstract: We compare several accounting based models for bankruptcy prediction. The
models are developed and tested on large data sets containing annual financial statements
for Norwegian limited liability firms. Out-of-sample and out-of-time validation shows that
generalized additive models significantly outperform popular models like linear discrimi-
nant analysis, generalized linear models and neural networks at all levels of risk. Further,
important issues like default horizon and performance depreciation are examined. We
clearly see a performance depreciation as the default horizon is increased and as time goes
by. Finally a multi-year model, developed on all available data from three consecutive
years, is compared with a one-year model, developed on data from the most recent year
only. The multi-year model exhibit a desirable robustness to yearly fluctuations that is
not present in the one-year model.

Keywords: Bankruptcy Prediction, Generalized Additive Models, Default Horizon, Perfor-
mance Depreciation, Multi-year model.

Publication details: Applied Stochastic Models in Business and Industry, Vol. 23, No. 2
(2007), p. 129–143.

Paper II: Bankruptcy prediction in Norway: A comparison study.

Author(s): Rada Dakovic, Claudia Czado, Daniel Berg

Abstract: In this paper we develop statistical models for bankruptcy prediction of Norwe-
gian firms in the limited liability sector using annual balance sheet information. We fit
generalized linear-, generalized linear mixed- and generalized additive models in a discrete
hazard setting. It is demonstrated that careful examination of the functional relationship
between the explanatory variables and the probability of bankruptcy enhances the models’
forecasting performance. Using information on the industry sector we model the unob-
served heterogeneity between different sectors through an industry-specific random factor
in the generalized linear mixed model. The models developed in this paper are shown to
outperform the model with Altman’s variables at all levels of risk. As a measure of models’
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forecasting accuracy the area under the ROC curve is used.

Keywords: Bankruptcy Prediction, Industry Effects, Hazard Model, Generalized Linear
Model, Generalized Linear Mixed Model, Generalized Additive Model.

Publication details: Submitted for publication, September 2007.

Comments: The major part of the analysis presented in this paper was run by Rada
Dakovic. Claudia Czado suggested numerous improvements and corrected the manuscript
recurrently. My contributions were primarily in project idea and definition phase, in prepa-
ration of the data set, some problem solving along the way and in the finalization of the
manuscript.

Paper III: A copula goodness-of-fit test based on the conditional probability
integral transform.

Author(s): Daniel Berg, Henrik Bakken

Abstract: We investigate a copula goodness-of-fit approach based on the conditional prob-
ability integral transform. The approach implicitly weights observations at corners and
edges of the unit hypercube which makes it very powerful at detecting tail heaviness for
large sample sizes. However, it is shown to perform rather poor for small sample sizes. We
propose a generalization that allows for any weighting, making it more robust and more
powerful for small sample sizes. Another weakness is that some deviations from the null
hypothesis may be neglected. We show an example and propose an extension. Results
from extensive Monte Carlo experiments show that our approach keeps prescribed levels
well and that certain weighting schemes produce superior power for three alternative hy-
potheses. The margins are treated as unknown nuisance parameters and are replaced by
their empirical distribution functions. A parametric bootstrap procedure is required to
obtain reliable p-value estimates. Applied to daily log-returns of large cap stock portfolios
the Gaussian- and one-parameter Clayton and Gumbel copulae are all strongly rejected,
increasingly so for increasing dimension and sample size. The Student-t copula on the
other hand, provides a good fit, indicating the presence of tail dependence in the daily
log-returns of stock data.

Keywords: Copula, goodness-of-fit, conditional probability integral transformation, order
statistic, parametric bootstrap, Anderson-Darling.

Publication details: Submitted for publication, April 2007.

Comments: Henrik Bakken contributed to the project idea and definition phase and to the
early developments of the theoretical results. Daniel Berg did most of the programming,
simulations and manuscript work.

Paper IV: Copula goodness-of-fit testing: an overview and power comparison.

Author(s): Daniel Berg

Abstract: Several copula goodness-of-fit approaches are examined, three of which are pro-
posed in this paper. Results are presented from an extensive Monte Carlo study, where
we examine the effect of dimension, sample size and strength of dependence on the nom-
inal level and power of the different approaches. While no approach is always the best,
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some stand out and conclusions and recommendations are made. A novel study of p-value
variation due to permuation order, for approaches based on Rosenblatt’s transformation
is also carried out. Results show significant variation due to permutation order for some
of the approaches based on this transform. However, when approaching rejection regions,
the additional variation is negligible. Finally, motivated by the permutation study, new
versions of some goodness-of-fit approaches are proposed and examined. The new versions
consider all permutation orders of the variables and we see some power improvement over
the approaches that consider one permutation order only.

Keywords: Copula, Cramér-von Mises statistic, empirical copula, goodness-of-fit, paramet-
ric bootstrap, pseudo-observations, Rosenblatt’s transform.

Publication details: Submitted for publication, October 2007.

Paper V: Local sensitivity analyses of goodness-of-fit tests for copulas.

Author(s): Daniel Berg, Jean-François Quessy

Abstract: The asymptotic behavior of several goodness-of-fit statistics for copula families
is obtained under contiguous alternatives. Many comparisons between a Cramér-von Mises
functional of the empirical copula process and new moment-based goodness-of-fit statistics
are made by considering their associated asymptotic local power curves. It is shown that
the choice of the estimator for the unknown parameter can have a significant influence on
the power of the Cramér-von Mises test, and that some of the moment-based statistics can
provide simple and efficient goodness-of-fit methods. The paper ends with an extensive
simulation study that aims to extend the conclusions to small and moderate sample sizes.

Keywords: Contiguous alternatives, copula, Cramér-von Mises statistic, empirical copula
process, goodness-of-fit test, local power curves, rank-based estimators.

Publication details: Submitted for publication, October 2007.

Comments: The authors of this work are equal partners. Professor Jean-François Quessy
derived most of the theoretical results and corresponding proofs and wrote the majority
of the manuscript. Daniel Berg did most of the programming and simulations as well as
some work on the manuscript. Both authors contributed equally to the project idea and
definition phase.

Paper VI: Models for construction of multivariate dependence: a comparison
study.

Author(s): Daniel Berg, Kjersti Aas

Abstract: We review models for construction of higher-dimensional dependence that have
arisen recent years. A multivariate data set, which exhibit complex patterns of depen-
dence, particularly in the tails, can be modelled using a cascade of lower-dimensional
copulae. We examine two such models that differ in their construction of the dependency
structure, namely the nested Archimedean constructions and the pair-copula constructions
(also referred to as vines). The constructions are compared, and estimation- and simula-
tion techniques are examined. The fit of the two constructions is tested on two different
four-dimensional data sets; precipitation values and equity returns, using state of the art



viii Summary

copula goodness-of-fit procedures. The nested Archimedean construction is strongly re-
jected for both our data sets, while the pair-copula construction provides a much better
fit. Through VaR calculations, we show that the latter does not overfit data, but works
very well even out-of-sample.

Keywords: Nested Archimedean copulas, Pair-copula decompositions, Equity returns, Pre-
cipitation values, Goodness-of-fit, Out-of-sample validation.

Publication details: Submitted for publication, October 2007.

Comments: This work was almost equally split between Kjersti Aas and myself. Daniel
Berg did the majority of the work concerning the hierarchical Archimedean copulas, while
Kjersti Aas did the majority of the work concerning pair-copula constructions. Daniel Berg
had the idea to the paper, and did most of the programming.
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1
Introduction

The last 30 years the international banking system has experienced many significant struc-
tural changes. Through mergers, acquisitions and globalization institutions have grown
in size. Nevertheless, competition has substantially increased since regulations have been
relaxed and has allowed banks to offer new products and to enter new markets and business
activities. This expansion of the activities lead to new risks and thus an increasing demand
for the quantification and pricing of risk (Crouhy et al., 2001).

Financial risks can be divided into market risk, credit risk, liquidity risk, operational
risk, legal and regulatory risk and human factor risk (Crouhy et al., 2001). This thesis
focuses on credit risk, the risk that the value of a portfolio changes due to unexpected
changes in the credit quality of issuers or trading partners (McNeil et al., 2006). This
includes both losses due to defaults and losses caused by changes in credit quality such as
the downgrading of a counterparty in some rating system. A typical financial institution is
exposed to credit risk in several areas of its business. Through lending and corporate bond
portfolios, through any over-the-counter derivative transactions and through the credit
derivative market. Hence, credit risk is very important as it relates to the core activity
of most financial institutions (McNeil et al., 2006). Driven by the explosive markets for
credit derivatives and the upcoming implementation of the regulatory requirements of
Basel II, active credit risk management is of crucial importance for financial institutions.
Consequently, there is a need for advanced mathematical and statistical methods.

Credit risk if often termed default risk. This term illustrates the fact that the proba-
bility of default is at the core of credit risk. Any model for the quantification of credit risk
relies substantially on a good prediction of default probability. Other elements of credit
risk is loss given default, exposure at default and dependencies between defaults. In this
thesis we examine two such elements of credit risk. The first part of the thesis, constituting
papers I and II, examines models for default prediction, more specifically accounting based
models. Flexible nonparametric models are introduced to the problem of default prediction
and compared to popular existing models. Important practical issues concerning default
horizon and prediction performance are also examined. The second part, constituting
papers III-VI, treats models for dependencies between defaults, more specifically copula
models. While the evaluation of univariate distributions is well documented, the study of
goodness-of-fit tests for copulas recently emerged as a challenging problem. Papers III-V
are devoted to the topic of copula goodness-of-fit testing. New tests are proposed and
existing tests are examined and, in some cases, generalized and extended. Most literature
on copulas still focus on the bivariate case. However, in many practical applications the
problem is higher dimensional. Paper VI deals with the construction of higher-dimensional
copulas; proposed models are examined, compared and applied.

The purpose of the following introductory sections is to give a brief introduction to
some of the issues encountered in credit risk management and some basic theory behind
the material presented in the papers. First, a very brief introduction to the modelling of
default probability is given in Section 1.1. Then an introduction to dependency modelling
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through copulas is given in Section 1.2. Following the introductory chapter, the six papers
and main contributions of the thesis are presented.

1.1 Default modelling

Two groups of models for the determination of default probability are commonly addressed
in literature, accounting based models and market based models. Discriminant analysis and
logistic regression models belong to the first group. The popular Z-score model (Altman,
1968) is based on discriminant analysis while Ohlsons O-score model (Ohlson, 1980) is
based on generalized linear models with the logit link function. More recently several
alternative models have been introduced to the problem of default prediction, e.g. neural
networks (Wilson and Sharda, 1994), Bayesian methods (Posch et al., 2005), support vector
machines (Chen et al., 2006) and generalized additive models (Berg, 2007a), among others.

The second group of models are market based models, also referred to as structural
models. The popular Moody’s KMV model (Crosbie, 1997) is a market based model based
on the work of Merton (Merton, 1974). The market based models estimate the probability
of default from the asset value of a firm. Stock prices are commonly used as proxies for the
asset value. Several studies compare market based models with accounting based models,
and most conclude that the market based models are superior, see e.g. Brockman and
Turtle (2003) and Hillegeist et al. (2004). However, these studies use early accounting
based models in their comparisons. More importantly, market based models require that
firms are registered on a stock exchange. This is quite often not the case, in particular for
small- and medium sized companies.

Papers I and II of this thesis both deal with topics in accounting based models and the
reader is referred to these papers for further details.

1.2 Copulae

We now look closer at the modelling of dependence between several random variables
using copulas. These random variables can for example be the returns of different as-
sets. Traditionally, dependence modelling in the world of finance has been equivalent with
the assumption of multivariate normality, with the correlation coefficient as a measure
of dependence. However, the correlation coefficient is only sufficient for capturing the
full dependence structure under the assumption of multivariate normality. The last few
decades we have seen several important extensions. First, it is now clear that univariate
distributions of financial returns are far from Gaussian. Second, the correlation coefficient
has been shown to be grossly insufficient to provide an accurate description of the depen-
dence structure of assets. Hence it is necessary to characterize the full joint multivariate
distribution.

To characterize the dependence structure of several assets it is essential to realize that
the joint multivariate distribution embodies two qualitatively different pieces of information
on the assets. On one hand we have the marginal distributions while on the other hand
we have the dependence structure of the assets, irrespective of their individual marginal
distributions. Only the introduction of the copula allows a proper separation between these
two pieces of information (Malevergne and Sornette, 2006). From an applied point of view,
dependence is at the core of risk management. A proper modelling of dependence is crucial
for i.a. diversification of risks, hedging strategies, securitizations and capital allocation.
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The concept of copulas was first introduced independently by Hoeffding (1940, 1941)
and Fréchet (1951) while Sklar (1959) first used the word copula in a statistical setting. He
provided some general properties, established the copula function and showed that any joint
distribution function can be considered a copula function. The literature on copulas has
been growing rapidly, in particular in finance and insurance, starting with the work of Wang
(1998), Frees and Valdez (1998) and Embrechts et al. (1999). Copulas are now successfully
applied in finance and insurance, biostatistics (see e.g. Lambert and Vandenhende (2002)),
hydrology (see e.g. Zhang and Singh (2006)) and environmental data (see e.g. Michele and
Salvadori (2006)) among others. Mikosch (2006) (with corresponding discussion) discusses
some critical remarks about the use of copulas, but despite his objections and scepticism
copulas remain a flexible and popular tool for practitioners and an interesting topic for
researchers. While the theory of copula models is now fairly well understood, inference for
copula models is, to an extent, still under development (Genest and Favre, 2007).

This chapter continues as follows. First, Section 1.2.1 gives a brief survey of the most
important properties of copulas. Then, some examples of parametric copula families are
examined while Section 1.2.3 presents important and popular dependence measures.

For exhaustive and general introductions to copulas the reader is referred to Joe (1997)
and Nelsen (1999) and for introductions oriented to financial applications Malevergne and
Sornette (2006) and Cherubini et al. (2004)

1.2.1 Definition and main properties

Definition 1.1 (Copula) A d-dimensional copula is a multivariate distribution function
C on [0, 1]d with standard uniform marginal distributions.

C is a mapping of the form C : [0, 1]d → [0, 1], i.e. a mapping of the unit hypercube into
the unit interval. The following three properties must hold for C(u) = C(u1, . . . , ud) to be
a copula (McNeil et al., 2006):

1. C(u1, . . . , ud) is increasing in each component ui.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d}, ui ∈ [0, 1].

3. For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+...+idC(u1i1 , . . . , udid) ≥ 0, (1.1)

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.
The first property is clearly required of any multivariate distribution function and the
second property is the requirement of uniform marginal distributions. The third property
is less obvious, but this so-called rectangle inequality ensures that if the random vector
(U1, . . . , Ud)

′ has distribution function C, then P (a1 ≤ U1 ≤ b1, . . . , ad ≤ Ud ≤ bd) is
non-negative.

The usefulness and importance of copulas for representing multivariate distributions
with arbitrary marginals is summarized in the following theorem of Sklar (1959):

Theorem 1 (Sklar’s theorem)
Let H be a joint distribution function with margins F1, . . . , Fd. Then there exists a copula

C : [0, 1]d → [0, 1] such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). Conversely, for any
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Figure 1.1: Two simulated data sets with standard normal marginal distributions,
both with correlation coefficient 0.70.

distribution functions F1, . . . , Fd and any copula C, the function H defined above is a d-
dimensional distribution function with marginals F1, . . . , Fd. Furthermore, if F1, . . . , Fd

are continuous, C is unique.

A very powerful property shared by all copulas is their invariance under arbitrary,
strictly increasing transformations of the random variables as stated in the following well-
known theorem. For a proof in the bivariate case see Malevergne and Sornette (2006).

Theorem 2 (Invariance theorem)
Consider d continuous random variables X1, . . . ,Xd with copula C. Then, if h1(X1), . . . ,
hd(Xd) are increasing transformations on the ranges of X1, . . . ,Xd, the random variables
Y1 = h1(X1), . . . , Yd = hd(Xd) have exactly the same copula C.

This result demonstrates that the full dependence between the d random variables is com-
pletely captured by the copula, independent of the shape of the marginal distributions.
In other words, Theorem 2 shows that the copula is an intrinsic measure of dependence
between random variables. Under a monotonic change of variable from an old variable to
a new variable, these two variables are comonotonic by definition. Intuitively it is natural
that a measure of dependence between two random variables should be insensitive to the
substitution of one of the variables by a comonotonic variable. This is precisely the content
of Theorem 2 on copulas. In contrast, a measure of dependence such as the correlation
coefficient is not invariant under a monotonic change of variable since it is a function of
both the copula and the marginal distributions. Hence, it is not an intrinsic measure of
dependence. We will return to this issue in Section 1.2.3.

To further illustrate the shortcomings of the linear correlation coefficient and the need
for copulas and other measures of dependence, consider Figure 1.1. This figure shows two
bivariate data sets, both having standard normal marginal distributions and correlation
coefficient 0.70. Hence, in terms of the correlation coefficient the dependency is the same
in the two data sets which is obviously not true.
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1.2.2 Some copula examples

We now consider some examples of copulas, categorized as follows. First, we consider
some fundamental copulas - important special dependency structures. We then proceed
with elliptical copulas and finally Archimedean copulas. For simplicity we restrict ourselves
to the bivariate case.

It is common to represent a bivariate copula by its distribution function

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) =

∫ 1

0

∫ 1

0
c(s, t)dsdt,

where the density c(u1, u2) is given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
. (1.2)

For implicit copulas the double integral on the right hand side of (1.2) does not have a
closed form but is implied by a typically well-known bivariate distribution function. For
explicit copulas the double integral has a closed form.

Fundamental copulas

First consider the simplest case where the continuous random variables X1,X2 are stochas-
tically independent if and only if C = Π, where Π(u1, u2) = u1u2. This is commonly re-
ferred to as the independence copula. At the other extreme, due to the rectangle inequality
in (1.1), it can be shown that in order for X1 to be a deterministic function of X2, C must
be either one of the two copulas

W (u1, u2) = max(0, u1 + u2 − 1) or M(u1, u2) = min(u1, u2)

which are usually referred to as the Fréchet-Hoeffding lower- and upper bounds, respec-
tively. Any copula C represents a model of dependence that lies somewhere between these
two extremes:

W (u1, u2) ≤ C(u1, u2) ≤ M(u1, u2), u1, u2 ∈ [0, 1].

Figure 1.2 show perspective- and contour plots of the three fundamental copulas.

Elliptical copulas

Elliptical copulas do not have a simple closed form, but are derived from multivariate
elliptical distribution functions. Hence, they are sometimes referred to as implicit copulas.
In this survey we will consider two examples of elliptical copulas; the Gaussian and the
Student copula. By construction, these two copulas are similar in their central parts and
become more and more similar in the tails as the number of degrees of freedom of the
Student copula increases. The two copulas can have drastically different behaviours with
respect to the dependence between extremes as we will see in Section 1.2.3.

The Gaussian copula is derived from the multivariate Gaussian distribution and pro-
vides a natural setting for the generalization of multivariate Gaussian distributions to so-
called meta-Gaussian distributions, applied in many areas. Meta-Gaussian distributions
was introduced in Krzysztofowicz and Kelly (1996) and generalized to meta-ellipticity by
Fang et al. (2002). The meta-Gaussian distribution has a Gaussian copula but differs
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Figure 1.2: Surface (top) and contour (bottom) plots of three fundamental copulas,
the countermonotonicity (left), independence (center) and comonotonicity (right)
copulas.

from the multivariate Gaussian distribution in the marginal distributions which may be
arbitrary.

Elliptical copulas have the advantage of being rich in parameters, i.e. the number of
parameters of a d-dimensional elliptical copula is d(d− 1)/2 and d(d− 1) for the Gaussian
and Student copulas, respectively. Elliptical copulas are also easily simulated, which makes
them convenient for numerical simulations. A disadvantage is the restriction to radial
linearity.

Example 1 (Gaussian copula)
Let Φρ denote the standard Gaussian cumulative distribution with correlation coefficient ρ.
Then the Gaussian copula with correlation coefficient ρ is given by

Cρ(u1, u2) = Φρ

(
Φ−1(u1),Φ

−1(u2)
)

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1 − ρ2
exp

{
−x2 − 2ρxy + y2

2(1 − ρ2)

}
dxdy,

where ρ is the correlation coefficient and Φ−1(·) is the inverse of the standard univariate
Gaussian distribution function. Figure 1.3(a) shows a scatter plot of the Gaussian copula.

Example 2 (Student copula)
The Student copula allows for joint fat tails and an increased probability of joint extreme
events compared to the Gaussian copula. Let Ts,ν denote the Student cumulative distribution
with shape coefficient s and degrees of freedom ν. Then the Student copula with shape
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(a) Gaussian copula (ρ = 0.5).
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(b) Student copula (s = 0.5, ν = 2).

Figure 1.3: Scatter plots of bivariate Gaussian (left) and Student (right) copulas.

coefficient s and degrees of freedom ν is given by

Cs,ν(u1, u2) = Ts,ν

(
T−1

ν (u1), T
−1
ν (u2)

)
=

∫ T−1
ν (u1)

−∞

∫ T−1
ν (u2)

−∞

1

2π
√

1 − s2

{
1 +

x2 − 2sxy + y2

ν(1 − s2)

}− ν+2
2

dxdy,

where s is the shape parameter and T−1
ν (·) is the inverse of the standard univariate Student

distribution function with ν degrees of freedom, expectation 0 and variance ν/(ν−2). Figure
1.3(b) shows a scatter plot of the Student copula with ν = 2 degrees of freedom.

Archimedean copulas

This extensively studied class of copulas has proved useful in a variety of applications. The
class encompasses a large number of different copulas which arise very naturally in the
context of survival analysis and frailty models. This explains their popularity in survival,
insurance and credit risk literature. These copulas have closed form expressions and are
thus sometimes referred to as explicit copulas. An Archimedean copula is defined as follows:

Definition 1.2 (Archimedean copula) Let ϕ be a continuouos, strictly decreasing and
convex function from [0, 1] to [0,∞) such that ϕ(1) = 0. Let ϕ[−1] denote the pseudo-
inverse of ϕ:

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, t ≥ ϕ(0).

Then the function

C(u, v) = ϕ[−1]{ϕ(u) + ϕ(v)}
is an Archimedean copula with generator ϕ. When ϕ(0) = ∞, ϕ is said to be a strict
generator and ϕ[−1] = ϕ−1.

For Archimedean copulas, the complexity of the dependence between two variables is
reduced and embedded into the function of one single variable, the generator ϕ. This trans-
forms the bivariate formulation into a simpler univariate one (Malevergne and Sornette,
2006).
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(a) Clayton copula (θ = 4).
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(b) Gumbel copula (θ = 3).
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(c) Frank copula (θ = 10).

Figure 1.4: Scatter plots of bivariate Clayton (left), Gumbel (middle) and Frank
(right) copulas.

Note that the bivariate Fréchet-Hoeffding lower bound is an Archimedean copula, while
the upper bound copula is not. Also, the independence copula is an Archimedean copula
with generator ϕ(t) = ln t. Among the large number of Archimedean copulas, the following
three examples are particularly popular in the literature.

Example 3 (Clayton’s copula)
The Clayton copula is sometimes also referred to as a Gamma frailty model or the Cook-
Johnson copula. This copula has so-called left tail dependence, to which we will return in
Section 1.2.3. It is given by

CCl
θ (u1, u2) = max

{(
u−θ

1 + u−θ
2 − 1

)− 1
θ
, 0

}
, θ ∈ [−1,∞)

with generator ϕ(t) = (t−θ − 1)/θ. Figure 1.4(a) shows a scatter plot of Clayton’s copula.

Example 4 (Gumbel’s copula)
The Gumbel copula is sometimes also referred to as the Gumbel-Hougaard or the Gumbel-
Barnett copula. It is an extreme value copula and has upper tail dependence. It is given
by

CGu
θ (u1, u2) = exp

{
−

[
(− ln u1)

θ + (− ln u2)
θ
] 1

θ

}
, θ ∈ [1,∞),

with generator ϕ(t) = (− ln t)θ. Figure 1.4(b) shows a scatter plot of Gumbel’s copula.

Example 5 (Frank’s copula)
The Frank copula has no tail dependence. It is given by

CFr
θ (u1, u2) = −1

θ
ln

{
1 +

(exp(−θu1) − 1)(exp(−θu2) − 1)

exp(−θ) − 1

}
, θ ∈ R

with generator ϕ(t) = − ln{(exp(−θt) − 1)/(exp(−θ) − 1)}. Figure 1.4(c) shows a scatter
plot of Frank’s copula.

Marshall and Olkin (1988) proved that, given a distribution function F defined on R+

such that F (0) = 0, the inverse generator ϕ−1(t) of an Archimedean copula, is the Laplace
transform of F ,

ϕ−1(t) =

∫ ∞

0
exp(−tx)dF (x).

This suggests that frailty models (Shih, 1998) can provide a natural mechanism for gener-
ating random variables with Archimedean copulas (Malevergne and Sornette, 2006). Such
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models are common in actuarial science because they offer a simple way of studying the
joint mortality of a group of individuals sharing common risk factors (see e.g. Frees et al.
(1996) among many others). In finance, they can also model the joint distribution of
defaults of different obligators subjected to the same set of economic factors.

1.2.3 Measures of dependence

We have now seen how the general dependene structure of several random variables may
be described through copulas. However, the use of copulas does not exclude more specific
measures of dependence. In this section we describe some important dependence measures
starting with the most basic concept, namely linear correlation. We then focus on on the
more interesting family of concordance measures. Finally, we turn to tail dependence,
a measure of extreme dependence. In each case we relate the measure to copulas. The
two latter kinds of dependence measures, concordance measures and tail dependence co-
efficients, are both copula based dependence measures. In contrast to the ordinary linear
correlation, these measures are functions of the copula only and can thus be used in the
parametrization of copulas (McNeil et al., 2006).

Linear correlation

The linear correlation is probably still the most used measure of dependence in general. It
plays an important role in financial theory, but it is important to realize that the concept is
only really a natural one in the context of multivariate normal or, more generally, elliptical
models.

Given two random variables X1 and X2, the linear correlation coefficient is given by

ρ(X1,X2) =
Cov(X1,X2)√

Var(X1)Var(X2)
,

provided that the variances Var(X1) and Var(X2) exist. Cov(X1,X2) is the covariance of
X1 and X2. It is a measure of linear dependence and takes values in [−1, 1]. If X1 and X2

are independent then ρ(X1,X2) = 0, but the converse does not hold in general.
The linear correlation coefficient is invariant under strictly increasing linear transfor-

mations. However, it is not invariant under nonlinear strictly increasing transformations.
Also, the linear correlation is only defined when the variances of X1 and X2 are finite. This
restriction to finite-variance models is not ideal for a dependence measure and can cause
problems when we work with heavy tailed distributions (McNeil et al., 2006).

Although the linear correlation takes values in [−1, 1], these bounds can not always
be reached. There are so-called attainable linear correlations that form a strict subset of
[−1, 1], governed by the Fréchet-Hoeffding bounds. As an illustration consider the following
well known example from Embrechts et al. (1999). If we have two random variables with
log-normal marginal distributions, X1 ∼ logN (0, 1) and X2 ∼ logN (0, σ2), the lower-
and upper bounds for ρ(X1,X2) are given by ρmin = ρ(exp(Z), exp(−σZ)) and ρmax =
ρ(exp(Z), exp(σZ)) respectively, where Z is a standard Gaussian random variable. One
can easily show that

ρmin =
exp(−σ) − 1√

(exp(1) − 1)(exp(σ2) − 1)
and ρmax =

exp(σ) − 1√
(exp(1) − 1)(exp(σ2) − 1)

.

These attainable bounds for the linear correlation are shown in Figure 1.5 for different
values of σ. Notice how the boundaries tend rapidly to zero as σ is increased. This
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Figure 1.5: Maximum and minimum attainable linear correlations for log-normal
random variables X1 and X2 where X1 ∼ logN (0, 1) and X2 ∼ logN (0, σ2).

shows, for example, that we can have situations where comonotonic random variables
have very small linear correlation. Since comonotonicity is the strongest form of positive
dependence, this provides a correction to the widely held view that small correlations imply
weak dependence (McNeil et al., 2006).

Concordance measures

Kendall’s tau. An important question for financial risk management is whether prices
of two or more assets tend to rise or fall together. If they do, the diversification of risks
will be difficult since diversification is based upon the fact that the fall of an asset is
statistically balanced by the rise of another (Malevergne and Sornette, 2006). A natural
way to quantify the tendency of assets to move together is to compare the probability that
they rise (or fall) together with the probability that one of the two assets rises (falls) while
the other one falls (rises). This can be translated mathematically as follows. Starting with
two independent realizations (x1, x2) and (x̃1, x̃2) of the same pair of random variables
(X1,X2), let us consider the quantity

ρτ = P{(x1 − x̃1)(x2 − x̃2) > 0} − P{(x1 − x̃1)(x2 − x̃2) < 0}. (1.3)

The left-most term on the right hand side gives the probability of concordance, i.e. the
probability that X1 and X2 move together upward or downward. In contrast, the right-most
term on the right hand side represents the probability of discordance, i.e. the probability
that the two random variables move in opposite directions. Equation (1.3) defines the pop-
ulation version of the so-called Kendall’s tau. This quantity is invariant under increasing
transformation of the marginal distributions. As a consequence, Kendall’s tau depends
only on the copula of (X1,X2). For continuous random variables, (1.3) can be transformed
to ρτ = 2P{(x1 − x̃1)(x2 − x̃2) > 0}−1, which yields the following expression in terms of a
functional of the copula C of the two random variables (Malevergne and Sornette, 2006):

ρτ (X1,X2) = 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2) − 1. (1.4)

From this equation, one may easily verify that Kendall’s tau takes values in [−1, 1], the
lower bound being reached if and only if (X1,X2) are countermonotonic, while the upper
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bound is reached if (X1,X2) are comonotonic. In addition, ρτ is zero for independent
random variables. However, as for the linear correlation, ρτ may vanish even for non-
independent random variables.

To evaluate (1.4), numerical integration is often called for. However, there are some
nice expressions for particular families of copulas. Genest and MacKay (1986) have shown
a relation between Kendall’s tau and the generator of an Archimedean copula:

ρτ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.

Table 1.1 provides closed form expressions for the relation between Kendall’s tau and the
dependence parameter of the Clayton, Gumbel and Frank copulas. For elliptical copulas,
Lindskog et al. (2003) have shown that the relation

ρτ =
2

π
arcsin ρ

holds for any pair of random variables whose dependency structure is given by an elliptical
copula.

Spearman’s rho. This dependence measure can also be defined in terms of concordance
and discordance for random pairs, but the most intuitive definition for our purposes in-
volves copulas. For random variables X1 and X2 with marginal distributions F1 and F2,
Spearman’s rho is given by ρs(X1,X2) = ρ(F1(X1), F2(X2)). In other words, Spearman’s
rho is simply the linear correlation of the probability transformed random variables, which
for continuous random variables is the linear correlation of their unique copula. As for
Kendall’s tau, Spearman’s rho can be expressed in terms of the copula of the two random
variables (McNeil et al., 2006):

ρs(X1,X2) = 12

∫ 1

0

∫ 1

0
{C(u1, u2) − u1u2}du1du2.

For higher dimensions it is common to define both concordance measures as matrices of
pairwise Kendall’s tau’s and Spearman’s rho’s.

Tail dependence

Like the concordance measures, the coefficient of tail dependence is a measure of pairwise
dependence which depends only on the copula of a pair of random variables X1 and X2 with
continuous marginal distribution functions. The motivation for looking at tail dependence
is that they provide measures of extremal dependence, or in other words, measurements
of the strength of dependence in the tails of a bivariate distribution. The coefficients are
defined in terms of limiting conditional probabilities of quantile exceedances (McNeil et al.,
2006).

In the case of upper tail dependence, we look at the probability that X2 exceeds its
qth quantile, given that X1 exceeds its qth quantile. Then we consider this limit as q goes
to infinity. Obviously the roles of X1 and X2 are interchangeable. Formally, we have the
following.
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Table 1.1: Kendall’s tau and coefficients of tail dependence for five popular copulas.

Copula ρτ λL λU

Gaussian (2/π) arcsin ρ 0 0

Student(ν) (2/π) arcsin ρ 2Tν+1

(
−
√

(ν+1)(1−ρ)
1+ρ

)
2Tν+1

(
−
√

(ν+1)(1−ρ)
1+ρ

)
Clayton θ/(θ + 2) 2−1/θ if θ > 0, 0 otherwise 0

Gumbel 1 − 1/θ 0 2 − 21/θ

Frank 1 − 4θ−1(1 − D1(θ)) 0 0

Note: D1 denotes the Debye function D1(θ) = θ−1
∫ θ

0
t/(exp(t) − 1)dt, and Tν+1 denotes the

univariate Student distribution with ν + 1 degrees of freedom.

Definition 1.3 (Tail dependence) Let X1 and X2 be random variables with distribu-
tion functions F1 and F2. The coefficient of upper tail dependence of X1 and X2 is

λU = lim
q→1−

P{X1 > F−1
1 (q)|X2 > F−1

2 (q)},

provided a limit λU ∈ [0, 1] exists. If λU ∈ (0, 1], then X1 and X2 are said to show upper
tail dependence or extremal dependence in the upper tail. If λU = 0 they are said to
be asymptotically independent in the upper tail. Analogously, the coefficient of lower tail
dependence is

λL = lim
q→0+

P{X1 < F−1
1 (q)|X2 < F−1

2 (q)},

provided a limit λL ∈ [0, 1] exists.

If F1 and F2 are continuous distribution functions, then we get simple expressions for
λL and λU in terms of the unique copula C of the bivariate distribution. Indeed, one can
show (McNeil et al., 2006) that

λL = lim
q→0+

C(q, q)

q
,

λU = lim
u→1−

1 − 2q + C(q, q)

1 − q
.

Using these expressions and L’Hopital’s rule, one can easily show the tail dependence
coefficients in Table 1.1. Note the positive tail dependence for the Student copula for all
ρ > −1.
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I.1 Introduction

Since the work of Beaver (1966) and Altman (1968), bankruptcy prediction have been
studied actively by academics and practitioners. This field of risk management continues
to be very active, much due to the continuous development of new financial derivatives.
For example, the pricing of credit derivatives relies on good estimates of counterparty risk.
Two kinds of models are commonly addressed in the literature. First, there are accounting
based models, for example discriminant analysis and logistic regression models. Second,
there are market based models, also referred to as structural models, for example Merton
models (e.g. the Moody’s KMV model). The market models are based on the value of a
firm set by the market. Stock prices are commonly used as proxies for the value. Several
studies compare market based models with accounting based models, and most come to
the conclusion that the market based models are superior, see e.g. Brockman and Turtle
(2003) and Hillegeist et al. (2004). However, these studies use early accounting based
models in their comparisons. And more importantly, market based models require that
firms are registered on a stock exchange and this is quite often not the case. In Norway
the majority of limited liability firms are not registered on any exchange. Hence, our focus
is on accounting based models.

Linear discriminant analysis models have been widely used. Altmans popular Z-Score
(Altman, 1968) is for example based on linear discriminant analysis. Generalized linear
models, or multiple logistic regression models are also popular. Ohlsons O-Score (Ohlson,
1980) is based on generalized linear models with the logit link function, also referred to
as logit analysis. Neural network models are powerful and popular alternatives, with the
ability to incorporate a very large number of features in an adaptive nonlinear model, see
for example Wilson and Sharda (1994).

Several authors have compared various models for bankruptcy prediction, see for exam-
ple Tam (1991), Tam and Kiang (1992), Dimitras et al. (1996) and Altman and Narayanan
(1997). Most of these compare NNs with discriminant- and/or logit analysis. See Atiya
(2001) for a summary of these and several other studies.

Our main objective is to introduce Generalized Additive Models (GAM) as a flexible
non-parametric alternative for bankruptcy prediction, and show that it performs signifi-
cantly better than discriminant analysis, linear models and neural networks. The only ap-
plication of GAM to bankruptcy prediction we have come across is De Giorgi and Burkhard
(2006). To our knowledge there is no study comparing GAM with the methods mentioned
above.

GAM is a generalization of the linear regression model. It replaces the usual linear
function of a covariate with a sum of unspecified smooth functions, helping us discover po-
tential non-linear shapes of covariate effects. The estimation of GAM and neural networks
is more computationally demanding than for linear models, but with the rapidly increasing
power of computers we expect an increasing application of such models in practice.

We develop several models using the same explanatory variables. To compare the
models we use the validation methodology that is referred to as "out-of-sample" and "out-
of-time" validation in Sobehart et al. (2000). The data set used is an extensive collection of
annual financial statements of Norwegian limited liability firms in the period 1996−2000 as
well as the year of bankruptcy for all firms that filed for bankruptcy in the years 1996−2001.

In addition to model comparison we examine the sensitivity of the GAM model to
default horizon, and we test the depreciation of the prediction models, examining how
the prediction power of a model depreciates as time goes by. This is very important to

(I.2)
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consider when determining cut-off levels and also when considering model risk. Finally the
performance of a multi-year model, developed on statements from three consecutive years,
is compared with a one-year model, developed on statements from one year only.

The contributions of this paper is the comparison of GAM with other popular models
for bankruptcy prediction as well as the illuminating results from the other important
issues such as model validation methodology, default horizon, performance depreciation
and model robustness with regards to the number of years of data included when building
the model. The paper is aimed particularly at practitioners, but also applied researchers,
who should consider all the above issues when building models for bankruptcy prediction
based on financial statement data.

The paper proceeds as follows. Section I.2 describes the models we will examine.
Section I.3 describes the data set and the explanatory variables, while Section I.4 discusses
model development and validation methodologies. Section I.5 compares the prediction
power of various models, out-of-sample and out-of-time. Section I.6 shows the sensitivity
of a GAM model to default horizon, while Section I.7 shows the depreciation rate of a
GAM model. Section I.8 compares the performance of a multi-year model and a one-year
model and finally, Section I.9 presents a summary of our findings.

I.2 Prediction Models

When handling bankruptcy data it is natural to label one of the categories as success
(healthy) and the other as failure (default) and to score these as 0 and 1 respectively.
A typical data set will have a series of ones and zeros as the response variable Y . As-
sociated with each Y there will often be observations on a set of explanatory variables
X1,X2, . . . ,Xp. A bank will typically have information on the earnings and debt of each
customer.

Since Altman (1968) proposed to use Linear Discriminant Analysis (LDA) to predict
bankruptcy, several contributions have been made to improve the results, using different
parametric, semiparametric and non-parametric models.

In contrast to normal-based regression models like the LDA, in which we wish to predict
the value Y , given values for the explanatory variables, we will also be interested in predict-
ing the probability π that Y = 1, given values for the explanatory variables (Krzanowski,
1998). Any probability is restricted to take values between 0 and 1, but a linear model
can give rise to any value between −∞ and ∞. It is thus necessary to transform π into a
quantity that takes values in the interval (−∞,∞) before a linear model can be sensibly
applied. There are several such transformations, or link functions. We will only consider
the logit link, ε = ln(π/(1 − π)), often denoted by ε = logit(π).

I.2.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a multivariate statistical technique that leads to
the development of a linear discriminant function maximizing the ratio of among-group
to within-group variability, assuming that the variables follow a multivariate normal dis-
tribution and that the dispersion matrices of the groups are equal. Clearly, both of the
assumptions pose a significant problem for the application of LDA in real-world situations,
since they are difficult to meet (Doumpos and Zopounidis, 1999).

(I.3)
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I.2.2 Generalized Linear Models

Generalized Linear Models (GLM) is a generalization of the multiple regression model

Y = Xβ + ε, (I.1)

where ε has mean vector 0 and covariance matrix σ2
I. The generalization makes use of

the exponential family of distributions

f(y; θ, ϕ) = exp{[yθ − b(θ)]/a(ϕ) + c(y, ϕ)},

for some specific functions a(·), b(·) and c(·), and parameters θ and ϕ. The GLM has the
following features:

1. The Yi’s (i = 1, . . . , n) are independent random variables sharing the same form of
distribution from the exponential family.

2. The explanatory variables provide a set of linear predictors η =
∑

j βjXj for j =
1, . . . , p.

3. The link between 1 and 2 is that g(μ) = η, where μ is the mean of Y . g(·) is called
the link function of the model.

Two extensions of the multiple regression model (I.1) that characterize the GLM, are its
applicability to any member of the exponential family of distributions, and the presence
of a link function when connecting the linear predictor η to the mean μ of Y . This
link is determined by the distribution of the random term ε in (I.1). If ε is logistically
distributed, we use the logit link and the GLM is referred to as the logit model. We will
consider the binomial distribution and the logit link function g(μ) = ln(μ/(n − μ)). Re-
expressing this function in terms of π instead of μ, we obtain g(π) = ln(π/(1 − π)) or
π = exp(η)/(1 + exp(η)) (Krzanowski, 1998).

I.2.3 Generalized Additive Models

Hastie and Tibshirani (1986) proposed Generalized Additive Models (GAM). These models
assume that the mean of the dependent variable depends on an additive predictor through
a nonlinear link function. GAM extends the GLM by replacing the linear form

∑
j Xjβj

with the additive form
∑

j fj(Xj). The linear regression step in GLM is replaced by a non-
parametric additive regression step, where the data is used to determine the appropriate
smooth function f . This is done through iterative smoothing operations and allows for
various non-linear effects of the explanatory variables.

The logistic additive model, when applied to binary response data, takes the form
ln(π/(1 − π)) =

∑
j fj(Xj) or π = exp(

∑
j fj(Xj))/(1 + exp(

∑
j fj(Xj))).

One of the main reasons for using GAM is that they do not involve strong assumptions
about the relationship between two or more variables that is implicit in standard parametric
regression. Such assumptions may force the fitted relationship away from its natural path
at critical points. Also, since each of the individual additive terms are estimated using
univariate smoothers, GAM avoids the problem of rapidly increasing variance for increasing
dimensionality. This problem is referred to as the "curse of dimensionality" and is present
in many nonparametric methods.

(I.4)
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I.2.4 Feed-forward Neural Networks

We consider the supervised class of Neural Networks (NNs) called Multi-Layer Perceptrons.
One hidden layer is used and no skip-layer connections are allowed. The probability of
belonging to class k is then computed by

fk(x) = fo

⎛⎝αk +

M∑
j=1

vjkfh(βj +

N∑
i=1

wijxi)

⎞⎠ , (I.2)

from inputs to outputs. Here N,M and K are the number of input nodes (i.e. the number
of explanatory variables), the number of nodes in the hidden layer and the number of output
nodes (i.e. the number of possible classes), respectively. The activation function, fh(x), of
the hidden layer is always taken to be the logistic function fh(x) = exp(x)/(1 + exp(x)),
while the output activation function, fo(x), may either be logistic or linear (Aas et al.,
1999). We use the logistic output activation function only.

A NN with no hidden layers is identical to the GLM, while a NN with one hidden layer,
where the hidden layer uses nonlinear activation functions such as the logistic function, is
nonlinear in the parameters and corresponds to multivariate nonlinear logistic regression
(Aas et al., 1999).

I.3 Data

Our data sets are extensive collections of annual financial statements for all limited li-
ability firms registered at the Norwegian register for business enterprises over the years
1996 − 2000. The 5 data sets all include a company identification number, explanatory
variables examined and the year of bankruptcy. For firms that had not failed at the time
of bankruptcy data extraction (2001), the year of bankruptcy was set to missing. When
referring to, for example, a model developed from 1996 data with a 2 year default horizon,
we mean a model developed from the 1996 financial statements, where a response variable
Y is set to 1 if the year of bankruptcy was 1997 or 1998 and 0 otherwise.

One could argue that the study is distorted by the fact that firms that are in a jam
often either put off submitting their statements or are unable to submit them at all. All
firms in Norway are obliged by law to submit their annual financial statements by a certain
date. When constructing the data set, firms delaying their submission have been allowed
for and the bankruptcy date have been set in retrospect. However, there may be certain
firms that are excluded from the study due to such circumstances, and this may distort the
predicted default probabilities somewhat. However, it will not affect the primary objectives
and contributions of this paper, stated in the Introduction.

A particular feature of the data is the very small number of defaults. Of approximately
100, 000 firms each year only about 1% defaulted the next year. This is representative of
bankruptcy prediction. Bankruptcy is a rare and extreme event. However, since we have
such a large data set, 1% of 100, 000 firms is still 1, 000 firms, we are able to develop and
validate models in a proper manner.

I.3.1 Explanatory variables

The choice of, and investigation of explanatory variables is not one of the objectives in
this paper. There are several studies of properties, relationships and empirical selection

(I.5)
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Table I.1: Explanatory variables employed and their definition

Variable Definition

REVANM No. of auditor remarks
AGE Age of firm
EKA* Equity share of total assets (solidity)
TKR* Return on capital employed (profitability)
UBE* Outstanding public dues to total assets
LEV* Trade credit to total assets
LIK* Cash minus short term debt to revenue from operations (liquidity)
LDEB* Consolidated long term liabilities to total assets
DIV* Dividends to total assets
INDUSTRY Which industry sector a firm belongs to
CurrentR* Current assets to current liabilities (liquidity)
QuickR* Current assets less inventory to current liabilities (liquidity)
RetAss* Return on assets (profitability)

Note: For the variables marked with an asterisk the first differences are also investigated.

of explanatory variables, see for example Beaver (1966). The appropriate variables to use
will vary with region and industry.

The explanatory variables considered here are found mainly in Bernhardsen (2001) and
is a collection of financial ratios, an industry indicator, the number of auditor remarks and
some first differences of the ratios. Through these first differences (the change since the
previous year) we are able to utilize not only the most recent financial statement data of a
firm, but also data from the previous year. In a preliminary analysis we removed variables
that were not significant in any model. The remaining 13 variables and 10 first differences,
i.e. 23 variables in total, are summarized in Table I.1. First differences are included for
variables marked with an asterisk.

All variables, except for the industry indicator, the number of auditor remarks and the
first differences, are defined as the deviance from their industry mean. These variables will
then reflect a firms risk compared to other firms within the same industry.

I.4 Methodology

I.4.1 Model Development Framework

When developing models we include all the explanatory variables summarized in Table I.1.
In practice a stepwise procedure should be applied to only include explanatory variables
that add significant predictive power to the model. Since we develop and test so many
models such a stepwise procedure is too time-consuming.

We do not exclude variables that are highly correlated. The inclusion of highly corre-
lated explanatory variables may cause problems in practice, but only if interpretations of
the individual effects of the explanatory variables are attempted. When including highly
correlated variables such interpretations should be avoided, due to the phenomena multi-
collinearity. However, if a model is constructed solely for the purpose of prediction, then
multicollinearity will not be of concern.

(I.6)
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When developing models we generally use 60% of the data set, randomly selected from
the full data set and referred to as the training set. The remaining 40% is used for validation
and is referred to as the out-of-sample test set.

I.4.2 Validation Framework

The performance statistics of models can be highly sensitive to the data sample used for
validation. To avoid embedding unwanted sample dependency, quantitative models should
be validated on observations of firms that are not included in the sample used to build the
model. This is referred to as out-of-sample validation in Sobehart et al. (2000).

If we develop a model from 1996 financial statements, using a two year default horizon,
we are predicting probabilities that firms will fail during 1997 − 1998. That means we
can’t build this model until 1999, when the 1998 data is available. The model can then be
applied to 1998 financial statements, predicting default probabilities for 1999− 2000. But
how good will the model perform on these 1998 data? Validating the model on 1998 data is
referred to as out-of-time validation and is the measure most interesting for practitioners.
We investigate both out-of-sample and out-of-time validation.

To compare models we consider so-called power curves, visually indicating the predic-
tive performance of the various models. Power curves display the trade-off between Type I
and Type II error for all possible values of the measure of interest. Type I and Type II er-
rors are the errors of misclassifying a bankrupt firm as healthy, and misclassifying a healthy
firm as bankrupt, respectively. In statistical terms, power curves represent the cumulative
probability distribution of default events for different default probabilities (Sobehart et al.,
2000).

While power curves is a convenient way of visualizing model performance, it is often
desirable to have a single measure that summarizes the predictive accuracy of each risk
measure for both Type I and Type II errors into a single statistic. We employ one of the
metrics proposed in Sobehart et al. (2000), namely the Accuracy Ratio (AR). This metric
is obtained by comparing the power curve of the model under investigation with that of
the perfect model. The closer the power curve is to the perfect power curve, the better
the model performs. To calculate the summary statistic we focus on the area A that lies
above the power curve of a random model (the 45◦ line) and below the power curve of the
model under investigation. The larger the area below the curve and above the 45◦ line, the
better the model is doing overall. The maximum area B that can be enclosed above the
45◦ line is achieved by the perfect curve. This maximum area is equal to 0.5. The ratio,
A/B is referred to as the AR. It summarizes the predictive power over the entire range of
possible risk values and is a fraction between 0 and 1.

To compare models we employ a resampling scheme where several subsets are resam-
pled, randomly, from the full test set. For each of these subsets the AR is calculated and a
t-test is performed to determine if a model performs significantly better than another, at a
certain confidence level. When validating models, we sample 100 subsets, each consisting
of 5000 firms, hence we have 99 degrees of freedom for the Student-t distributed variable.
We use a 99.5% confidence level.

I.5 Model Comparison

We now present the results from a comparison of two year default horizon models. Linear
discriminant analysis (LDA), generalized linear models (GLM), generalized additive models
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Table I.2: Accuracy ratio means and standard deviations for various default pre-
diction models.

Model AR Mean AR Std

LDA 0.713 0.03
GLM-Logit 0.720 0.04
NN 0.723 0.05
GAM-Logit 0.773 0.04

Note: 1996 data, two year default horizon, out-of-sample validation.

(GAM) and single-hidden-layer neural networks (NN) are compared. For the NN models
we use weight decay to help the optimization process and avoid overfitting. We use a
weight decay of 0.01. We also use an accuracy ratio maximizing function to determine
the optimal network size. The network size corresponds to the number of nodes in the
hidden layer, M in Equation (I.2). The output function fo(x) is chosen to be logistic. We
wish to compare the various models using the same training and test data sets, hence no
cross-validation was performed.

I.5.1 Out-of-sample Validation

We first perform out-of-sample validation. We develop one model from the 1996 training
set and test this model on the 1996 out-of-sample test set. We then develop one model
from the 1997 training set and test this model on the 1997 out-of-sample test set, and
correspondingly for the 1998 and 1999 data sets. The results for the 1996 models are
displayed in the left graph of Figure I.1, showing the power curves of each model. The
LDA, GLM and NN models seem to perform equally well, while the GAM model seems
to outperform the others. To confirm this visual impression we look at the sampled AR
statistics, displayed in Table I.2. We see that all models have approximately the same
standard deviation and that the GAM model has a higher mean than the other models.
Table I.3 shows whether or not a model performs significantly better than the models above
it in the table, from left to right, the uppermost model to the model directly above. The
table includes the results of the 1996, 1997, 1998 and 1999 models. For the 1996 models
our visual impression from the power curves is confirmed. There is no significant difference
between LDA, GLM and NN while GAM significantly outperforms the others. For the 1997
models the GLM and NN models significantly outperform the LDA. For 1998 and 1999
the GLM does not perform significantly better than the LDA, but now the NN performs
significantly better than the GLM. For all years the GAM model, with a confidence level
of 99.5%, performs significantly better than all other models tested.

I.5.2 Out-of-time Validation

The results from the out-of-sample validation are interesting, but not exactly what we
are interested in. We seek the performance on future data, hence we perform out-of-
time validation on the 1998 data. The resulting power curves are displayed in the right
graph of Figure I.1, and the corresponding AR statistics are displayed in Table I.4. The
significance indicator tells us whether or not a model performs significantly better than
the models above it in the table. We see that GAM still significantly outperforms all
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Table I.3: Significance indicators stating whether or not a model performs signifi-
cantly better than the models above.

Model 1996 1997 1998 1999

LDA - - - -
GLM-Logit F T F F
NN FF TF TT TT
GAM-Logit TTT TTT TTT TTT

Note: The combination ’TF’ indicates that a model does and does not perform significantly better
than the uppermost model and the model directly above it in the table, respectively. Two year
default horizon, out-of-sample validation, 99.5% confidence level.

Table I.4: Accuracy ratio means and standard deviations for various models.

Model AR Mean AR Std Signif.

GLM 0.676 0.04 -
LDA 0.678 0.04 F
NN 0.695 0.04 FF
GAM 0.726 0.04 TTT

Note: The significance indicator states whether or not a model is significantly better than the ones
above. 1996 data, two year default horizon, out-of-time validation on 1998 data, 99.5% confidence
level.

the other models. LDA, GLM and NN do not differ significantly. At high risk levels it
seems like the NN model performs almost as good as the GAM, but as we move towards
lower risk levels the GAM model outperforms all the other models, including the NN. This
nicely demonstrates the importance of examining the model at the appropriate levels of
risk. Note that while it varies which model performs second best, the GAM model seems
to perform best at all levels of risk.

I.6 Default Horizon

The term default horizon refers to the time horizon for which the model tries to predict. A
one year default horizon model will define firms that fail during the first year after model
development as default, while a two year default horizon model will define firms that fail
during the first two years as bankrupt.

There are several reasons why the default horizon is important to consider. When
entering a credit derivative contract for example. The time period of the contract will
determine the default horizon. Or say the intended use is credit granting decision making.
Then the highest prediction power is achieved by choosing a short default horizon, but
this will ’hide’ firms that are in distress but not as urgent and severe as those identified
by the model. Alternatively, choosing a long default horizon will yield early warnings
of distress, enabling preventive actions. Perhaps the best solution is to continuously use
several models, each serving their own specific purpose.

We develop several GAM models on the same data set (1996), but with varying default
horizons. In order to test a default horizon up to five years, we perform out-of-sample
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22 Paper I. Bankruptcy prediction by GAM

0 20 40 60 80 100

0
20

40
60

80
10

0

% of population excluded

%
 o

f d
ef

au
lts

 e
xc

lu
de

d

GAM
GLM
LDA
NN

(a)

0 20 40 60 80 100

0
20

40
60

80
10

0

% of population excluded

%
 o

f d
ef

au
lts

 e
xc

lu
de

d

GAM
GLM
LDA
NN

(b)

Figure I.1: Prediction power of LDA, GLM, NN and GAM models. 1996 data,
two year default horizon, out-of-sample and out-of-time validation: (a) Out-of-
sample validation; (b) Out-of-time validation on 1998 data.
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Figure I.2: Power graph indicating discriminating power as default horizon varies.
GAM models, 1996 data, out-of-sample validation.

validation. Figure I.2 shows the results and we clearly see that the performance is reduced
as the default horizon is increased. This is an expected, but nevertheless important result,
and practitioners should keep this in mind when choosing a default horizon and assessing
model risk. Table I.5 displays the results from the resampling procedure, and we see that
the performance is reduced significantly for each year added to the default horizon.

By looking at which explanatory variables prove most significant we find that the longer
the default horizon the more variables proved significant. This is especially evident if we
compare 1 and 5 year default horizons. This indicates that signs of short term financial
distress can be detected by looking at quite few variables. In general we can conclude that
for longer default horizons the signs of distress are not so easily detected and much more
complex interrelational structures are present. In such cases good statistical models are
crucial for detecting important information and insight regarding the riskiness of firms.
We also note that for all models the strongest variables are the ones we expected would
be dominating: number of accountant remarks, age, industry, outstanding public dues and
trade credit.

I.7 Performance Depreciation

When developing a model one might wish to keep this model for some time. In this case it
is very important to be aware of the depreciation rate of the model. If for example a bank
wishes to exclude 80% of the defaults at all times, the cut-off point needs to be adjusted
as the model depreciates. This depreciation is also very important to consider if we are to
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Table I.5: Accuracy ratio means and standard deviations for GAM models as
default horizon varies.

Default Horizon AR Mean AR Std Signif.

5 years 0.672 0.02 -
4 years 0.701 0.03 T
3 years 0.732 0.02 TT
2 years 0.760 0.04 TTT
1 year 0.784 0.07 TTTT

Note: The significance indicator states whether or not a model performs significantly better than the
models above it in the table. 1996 data, varying default horizons, out-of-sample validation, 99.5%
confidence level.

attempt to estimate the model risk. These are some reasons to examine the depreciation
rate of bankruptcy prediction models as time goes by.

Let us look at how the performance of a one year default horizon model depreciates as
time goes by. When performing out-of-time validation in Section I.5.2 this was basically
what we did. We built a two year default horizon GAM model on the 1996 data and tested
its performance on 1998 data, that is 2 years into the future. We now repeat this exercise
and test the 1996 model on 1996, 1997, 1998, 1999 and 2000 data, that is 0− 4 years into
the future. Table I.6 shows us the AR statistics from the resampling procedure. We see
that there is a big decrease in mean performance from 0 to 1 year ahead. We also see that
there is no significant difference in performance on data 1 and 2 years ahead. From 2 to 3
and 4 years ahead we again see a significant decrease in performance. Figure I.3 shows us
the power curves for the models tested. This figure adds important information compared
to the numbers in Table I.6. An interesting property seen is that the performance stays
quite good, even 4 years into the future for high risk levels. However, the figure shows that
to maintain an exclusion of for example 80% of the defaults, the cut-off point will have
to be drastically increased as time goes by. We also note that the greatest depreciation
happens the first year. The model performs much better on out-of-sample data than on
out-of-time data. This is a natural effect of overfitting. The depreciation from 3 to 4 years
ahead is relatively small in comparison. The point discussed in Section I.4.2, of models
performing better than others at some risk levels but worse at other risk levels is also nicely
demonstrated. Consider the performance 1 and 2 years ahead, we see that the model seems
to perform better 1 year ahead for high risk values, that is when approximately 0 − 18%
of the population is excluded, while it performs better 2 years ahead if more than 18% of
the population is excluded.

I.8 Multi-Year Model

We suspect that several actors in the market use only the most recent data when building
bankruptcy prediction models. This is justified by the fact that the most recent data best
reflect the characteristics of the data on which it will be used. But then the assumption
is made that these characteristics change from year to year, and if this is true then the
developed model will not be interesting anyway since it will only be applicable on contem-
porary data. So we must assume, unless we have good reason to believe otherwise, that the

(I.12)



I.8. Multi-Year Model 25

0 20 40 60 80 100

0
20

40
60

80
10

0

% of population excluded

%
 o

f d
ef

au
lts

 e
xc

lu
de

d

0yrs ahead
1yr ahead
2yrs ahead
3yrs ahead
4yrs ahead

Figure I.3: Predictive power depreciation 0 − 4 years into the future for a GAM
model. 1996 data, one year default horizon.

Table I.6: Accuracy ratio means and standard deviations showing performance
depreciation as time goes by.

No. yrs into future AR Mean AR Std Signif.

4 0.699 0.09 -
3 0.735 0.08 T
1 0.756 0.08 FT
2 0.770 0.07 FTT
0 0.824 0.06 TTTT

Note: The significance indicator states whether or not a model performs significantly better than the
models above. 1996 data, one year default horizon, 99.5% confidence level.
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Table I.7: Accuracy ratio means and standard deviations for the M98 and M96−98

models.

Test Data M96−98 M98 Signif.

1998 0.780 (0.06) 0.752 (0.07) T
1999 0.755 (0.07) 0.707 (0.09) T
2000 0.759 (0.08) 0.747 (0.09) F

Note: Standard deviations in parentheses. The significance indicator states whether or not the
M96−98 model performs significantly better than the M98 model, with a confidence level of 99.5%.
One year default horizon, out-of-sample and out-of-time validation.

characteristics driving bankruptcy are constant. And if this is constant we should include
as much data as possible when developing the model, since more data will give better esti-
mates of default risk. Considering this and having seen the depreciation of models as time
goes by, we compare a one-year model with a multi-year model. The one-year model is
built on 1998 data while the multi-year model is built on data from three consecutive years,
1996 − 1998. Both models are one year default horizon GAM models. For the multi-year
model we utilize much more data than for the one-year model. Henceforth we will refer to
the multi-year model and the one-year model as M96−98 and M98 to ease notation. The
subscript denotes the years of data used to develop the model.

There are several arguments to consider multi-year models, in addition to those already
mentioned. We are able to utilize more data, giving our models a better basis for detecting
signs of distress. The significance of variables in a multi-year model is less dependent on
the macroeconomic conditions specific to one year. A model, developed on one year of
data only, will build signs of distress specific to that year into the model. A multi-year
model on the other hand is expected to smooth out such year-specific effects. This way
we would expect a multi-year model to be more robust than a one-year model, making it
interesting for practitioners, especially those who know there might be some years until a
new model is developed.

We developed several one year default horizon GAM models, one model for each year
of data. Out-of-sample validation for each of these models shows that the out-of-sample
performance varies quite much from year to year. This justifies considering a multi-year
model. We never know if next year will be a good or bad year for model development. By
using several years of data we better guard ourselves against such yearly fluctuations.

We perform out-of-sample validation, testing the models on the 1998 data, and out-of-
time validation on 1999 and 2000 data. Unfortunately we do not have data that enables
us to test the performance of the multi-year model more than two years into the future.
However, Table I.7, still shows us interesting results. We see that M96−98 is more robust
than M98, as expected. The AR for M98 falls quite low for the 1999 test data while
the multi-year model performs well for all test sets. The resampling procedure shows
that M96−98 performs significantly better than M98 on the 1998 and 1999 test data, with a
confidence level of 99.5%. On the 2000 data there is no significant difference in performance.
The fact that the multi-year model outperforms the one-year model on the 1998 data is
interesting. Apparently the 1996 − 1997 data adds information about the 1998 out-of-
sample test set, that the 1998 training set does not include.
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I.9 Summary and discussion

We have shown, through out-of-sample and out-of-time validation, that generalized additive
models significantly outperforms other models like linear discriminant analysis, generalized
linear models and neural networks.

If the IT system prevents the implementation of GAM models or the method is deemed
non-intuitive and hard to justify to managers, an approximation can be used. One can
define dummy variables, a number of variables each representing an interval of the values
of the original variable, often referred to as binning. For example d1 = 1{DIV ≤0}, which
means that d1 will equal 1 if DIV is less than or equal to zero, and zero otherwise. Then
a regression is performed with all the dummies. This will be an approximation since it
allows for non-linear effects. The advantage is that it is very easy to explain the effect
and meaning of each variable and that once the dummies are defined all we need to do is
apply simple linear or ridge regression on the dummies. The disadvantage is the process
of defining the intervals for each dummy. This process can be subjective and cumbersome
if not automated. Also, the advantage of interpretation comes with a price, variables that
are highly correlated must be excluded from the model to avoid multicollinearity problems.

We recommend further use of the out-of-time validation framework, employing re-
sampling procedures. The ability to say whether a model is significantly better than
another, given a certain confidence level, is of uttermost importance and is best achieved
by re-sampling. Also, power curves adds valuable visual information about performance
at different levels of risk. In practice one may only be interested in the performance for
certain risk levels. In this case one can simply modify the AR-calculation to only consider
the risk levels of interest.

Further we have shown how sensitive models are to the choice of default horizon. This
is important to consider when for example negotiating a credit derivative contract and for
banks monitoring and actively managing their portfolios.

We also examined the depreciation rate of models. This is very important to consider
when deciding on desired levels of risk and cut-off points and also when estimating model
risk. Figure I.3 nicely demonstrates the need for cut-off adjustment as time goes by.

Finally we compared a one-year model, estimated from one year of data, with a multi-
year model, estimated from three consecutive years of data. The multi-year model per-
formed significantly better on out-of-sample test data and also on some out-of-time test
data. The multi-year model seemed to be more robust, performing stable across the test
data sets while the one-year model performed rather poor on one of the test data sets.
The main reason for the multi-year model outperforming the one-year model is believed
to be the size of the training data set. Unless there are good reasons to believe that the
characteristics driving bankruptcies have changed, we argue that data from several years
should be utilized. An interesting issue for further research would be finding how far back
it is optimal to go. More data is needed to do such a study.

The results and conclusions obtained in this paper are only indicative since they are
conditioned on the data set at hand. Nonetheless, the discussions are fully applicable and
the topics discussed should be considered by practitioners developing a model.
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geneity between different sectors through an industry-specific random factor
in the generalized linear mixed model. The models developed in this paper are
shown to outperform the model with Altman’s variables at all levels of risk.
As a measure of models’ forecasting accuracy the area under the ROC curve
is used.
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II.1 Introduction

Bankruptcy prediction is attracting the attention of both academics and practitioners
since the seminal works of Beaver (1966) and Altman (1968) in the late 1960s. Researchers
traditionally rely on linear combinations of financial ratios as predictors and use a single
observation per company. Several recent studies emphasize that the relationship between
explanatory variables and the logit (probit) of the default probability is often non-linear
(see Sobehart and Stein (2000), Falkenstein et al. (2000), Berg (2007a)). Additionally,
Shumway (2001), Chava and Jarrow (2004) and Hillegeist et al. (2004) emphasize that
a single-period approach neglects important information when a company is at risk but
remains solvent. To avoid these deficiencies of the traditional approaches, suggestions have
been made to use neural networks or generalized additive models to model non-linearities
and hazard models instead of single-period static models to incorporate information from
the complete period at risk (see Shumway (2001), Chava and Jarrow (2004) and Hillegeist
et al. (2004)). In this paper we follow the pattern of non-linear modeling and evaluate
the forecast performance of both static- and hazard models. Our models are broad in
scope in the sense that they apply to all industry sectors, including financial institutions.
Additionally, we model the unobserved heterogeneity between different industry sectors
by introducing an industry-specific intercept as a random factor in our non-linear logistic
regression.

The purpose of this paper is to develop statistical models for bankruptcy prediction
of firms in the limited liability sector of Norway. The 98, 421 firms in our database are
observed on an annual basis and most of them are not registered on any exchange. There-
fore, we have to rely on traditional accounting-based methods. We examine whether one
can enhance bankruptcy prediction accuracy by a careful examination of the functional
relationship between explanatory variables and the probability of bankruptcy. We utilize
generalized additive models (GAM) in exploratory analysis to reveal non-linear relations to
be used in the generalized linear model (GLM). Further, we show that when one carefully
models, through linear and non-linear transformations of covariates in GLM, prediction
accuracies of GLM and GAM are approximately the same. A slight improvement of model
performance is further obtained by estimating an industry-specific intercept as a random
factor. In the assessment of model accuracy we use ROC and CAP curve analysis, which
became widely accepted in the bankruptcy prediction literature since they were introduced
in Sobehart et al. (2000) and Sobehart and Keenan (2001). Forecasting ability of our mod-
els is stable over different subsets of the dataset and over time. The models are then
compared to the celebrated Altman’s Z-score model which uses a linear combination of 5
financial ratios as a proxy of the default probability. The Altman’s model is reestimated
and shown to capture less publicly-available information than the models we use in our
analysis for this specific dataset. Improvements obtained by using a hazard instead of
static setting are minimal, possibly because the maximal period at risk in our sample is
low compared to previous studies of hazard models.

The paper is organized as follows. In Section II.2 we give a brief historical overview
of bankruptcy prediction methods and outline statistical methods used in our analysis.
Section II.3 describes our bankruptcy database. In Section II.4 we present the fitted
models and evaluate their out-of-time prediction performance. Section II.5 concludes and
discusses open problems for further research.

(II.2)
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II.2 Statistical models for bankruptcy prediction

The bankruptcy prediction literature involves a number of statistical techniques used to
obtain reliable estimates of default probability. The studies of Beaver (1966) and Alt-
man (1968) that employ univariate and multivariate discriminant analysis respectively, are
considered pioneering investigations of the relationship between the financial status of a
company and its probability of failure. Subsequently, new statistical methods including
gambler’s ruin and option pricing theory, as well as linear regression, have been successfully
applied in empirical analysis (see Wilcox (1971), Merton (1974), Martin (1977), Ohlson
(1980), Zmijewski (1984)). Techniques used nowadays to construct bankruptcy prediction
models involve neural and Bayesian networks (Tam and Kiang, 1992; Sun and Shenoy,
2007), theory of point processes (Das et al., 2007; Duffie et al., 2007), support vector ma-
chines (Härdle et al., 2005), and many others. For extensive reviews of related literature
the reader is referred to Altman and Hotchkiss (2005), Altman and Narayanan (1997) or
Falkenstein et al. (2000). We focus our attention on methods that emphasize the use of
survival analysis and industry effects in failure prediction.

Recently several studies, including Shumway (2001), Chava and Jarrow (2004) and
Hillegeist et al. (2004), have indicated that conventional models have a drawback of being
based on the utilization of only a single observation per company. Traditionally the default
probability of a company, irrespective of its bankruptcy status, has been dependent solely
on its last available set of predictors. Such models, often called static, are shown to be out-
performed by dynamical hazard models that incorporate the financial history of a company
from the entire observation period. Applications of survival analysis techniques in bank
failure prediction has a long history (see LeClere (2000) and Haling and Hayden (2006)
for a review), while in bankruptcy prediction of non-financial institutions these methods
have been disregarded since the work of Shumway (2001). Shumway argues that informa-
tion neglected by static models can significantly improve model’s forecasting accuracy, and
highlights the simplicity of maximum likelihood estimation in the dynamical framework.
Since the discrete hazard model plays one of the central roles in our investigation, we
briefly outline its setting.

Assume that each firm i in the study has a failure time Ti and a censoring time Ci,
both observed at discrete times, and that Ti, Ci are independent random variables with
values in {1, . . . , k}, where k denotes the end of the observation period. The observable
lifetime of a firm i is then Si = min(Ti, Ci). Let Δi denote the random censoring indicator
given by

Δi =

{
1, Ti ≤ Ci, (non-censored),

0, Ti > Ci, (censored).

In addition to the observed lifetime si, we consider firm-specific time-varying covariates
xit ∈ Rp, that are assumed to have an influence on the lifetime. The data is given by

(si, δi,xi(si)), i = 1, . . . , n,

where x
′

i(si) := (x
′

i1, . . . ,x
′

isi
) is the history of firm i until the observed lifetime si, and δi

is the observed censoring indicator.

The basic quantity characterizing Si is the discrete hazard function

λ(t|xi(t)) := P(Si = t|Si > t − 1,xi(t)), t ∈ {1, . . . , k}, (II.1)

(II.3)
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which is assumed to be dependent on parameters or functions to be estimated. The exact
form of the dependence of the hazard rate λ(t|xi(t)) on time-varying firm-specific covari-
ates is given in Section II.4.2. Under certain conditions, parameters of dynamical hazard
model can be estimated in the framework of ordinary binary regression by treating the
annual bankruptcy indicators as independent binomials (see Fahrmeir and Tutz (2001) or
Shumway (2001)). Precise assumptions under which the correspondence between the two
models holds can be found in Arjas and Haara (1987) or Fahrmeir and Tutz (2001, p. 396).
We note here that the hazard model built on only one year of data coincides with the static
model.

We conclude this section with a short outline of research where the significance of in-
dustry effects in bankruptcy prediction modeling was discussed. Plat and Plat (1990, 1991)
are among the first studies that illustrate the importance of industry-relative adjustments
in failure prediction. Subsequently, a number of papers documented the impact of industry
groupings on bankruptcy announcements. Lang and Stulz (1992) examine contagion and
competitive intra-industry effects on default rate, while Alfo et al. (2005) use random in-
dustry effects to anticipate problematic firms. For a detailed review of reasons for presence
of industry-specific information in bankruptcy prediction models, and an extensive list of
references where these reasons are elaborated, the reader is referred to Chava and Jarrow
(2004).

II.3 Data set

II.3.1 The Data Set

Financial statements and bankruptcy status for limited-liability firms in Norway are ob-
served on an annual basis in the time period 1996-2000. Firms reporting non-positive total
assets were eliminated. Balance sheets with book equity, short term debt or revenue from
operations equal to 0 were excluded from further investigation in order to avoid null divi-
sions when calculating financial ratios. Exploratory data analysis indicated a substantial
lag between the date of the last reported financial statement and the bankruptcy date.
This phenomenon is also described in Bernhardsen (2001). Among companies that were
declared bankrupt in the time-period 1997-2001, only 25% report their financial statements
in the last year of their existence, while for the remaining 75% we observe at least one year
of missing data. For this reason, all companies (bankrupt as well as non-bankrupt) with
missing financial statements for at least one year before bankruptcy or the end of the ob-
servation period were excluded from further analysis. Since salaried household work and
internal organs and organizations were represented by only 3, respectively 1 firm in the
resulting sample, these two industry sectors were not considered in our paper. For each of
the continuous covariates used to estimate the model, the values below 0.2%-quantile and
above 99.8%-quantile were calculated, and firms with these financial statements were also
excluded from further consideration. Truncation of the data is often performed in order
to remove outliers that frequently occur due to typos or recording errors (see Shumway
(2001), Chava and Jarrow (2004)). Note that the discrete hazard model can be estimated
in the framework of binary regression, since censoring can occur only at the end of the
observation period due to the data requirements. Our final sample consists of 436, 145
firm-years corresponding to 98, 421 unique firms, and contains 2, 270 bankruptcies.

(II.4)
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II.3.2 Explanatory variables

The set of covariates included in our model building process combines conventional account-
ing ratios used in bankruptcy prediction studies, and covariates traditionally employed in
the credit risk analysis at Norges Bank, presented in Bernhardsen (2001). We take into
account 5 frequently used default risk factors: profitability, solidity, liquidity, size and
leverage. Additionally, we include industry indicator variables, information on the number
of auditor remarks, age of a company, and an indicator of dividends paid current year as
predictors of default probability. The list of time-varying explanatory variables considered
in our analysis consists of

1. REVANMit - the number of auditor remarks of firm i at time t,

2. AGEit - age of a firm i at time t measured in years,

3. DIVit - indicator for dividends paid by firm i at time t (dichotomous),

4. EKAit - book value of equity to total assets of firm i at time t (solidity),

5. SIZEit - logarithm of total assets of firm i at time t (size),

6. CashRit - cash and marketable securities to current liabilities of firm i at time t
(liquidity),

7. RetAssit - return on assets to total assets of firm i at time t (profitability),

8. CLTAit - current liabilities to total assets of firm i at time t (leverage).

Here i = 1, . . . , n, t = t0(i), . . . , S0(i), where t0(i) and S0(i) denote the starting and survival
time of firm i. In addition, the information about the sector a firm belongs to (fixed over
time) is included into the model through an industry-specific intercept estimated as a fixed
or random factor. The distribution of firms and bankruptcies with respect to the industry
sector is given in Table II.1.

In the remainder of this section we shortly discuss properties of covariates described
above placing the emphasis on the difference between bankrupt and solvent firms.

Summary statistics for REVANM can be found in Table II.2. The table indicates
that distributions of the number of auditor remarks among solvent and bankrupt firms
are distinct. Additionally, we notice the change in the distribution in 1999, when the
percentage of companies with more then one remark becomes lower compared to the period
1996-1998. This change is possibly due to the fact that prior to 1998 Norwegian law
was imposing only moderate sanctions for non-reporting financial information while more
stringent regulations were introduced in 1998.

In Figure II.1 the histogram of AGE (bellow 50 years) and kernel density estimators
of covariates EKA, SIZE, RetAss, CashR and CLTA 1 for bankrupt and non-bankrupt
firms in the complete data-set are given. The difference between bankrupt and solvent
companies is clearly visible. For all covariates except of CashR, the difference in modes
of the respective distributions is evident. In agreement with econometric intuition, we
observe that bankrupt companies are more likely to have low values of EKA, RetAss,

1Since continuous covariates that we consider have heavy-tailed distributions, the kernel density esti-
mators are given for values of EKA above 2%-quantile, RetAss between 1%- and 99%-quantile, CashR and
CLTA below 80%- and 98%-quantile , respectively.

(II.5)
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Table II.1: Distribution of firms with respect to the industry sector

Industry sector Total Bankrupt Bankrupt (%)

Forestry and agriculture 607 17 2.80
Fishing 1059 18 1.70
Mining and extraction 599 6 1.00
Industry 9810 315 3.21
Water and power supply 300 1 0.33
Building and construction 8503 242 2.85
Commodity trade, vehicle
and domestic appliance repair 26340 863 3.28
Hotel and catering activity 3356 224 6.67
Transport and communication 5616 123 2.19
Finance and insurance 4225 22 0.52
Property operations, rental business
and commercial services 32373 348 1.07
Public administration 46 2 4.35
Education 558 12 2.15
Health and social service 2086 20 0.96
Other social and personal services 2943 57 1.94

Total 98421 2,270 2.31

CashR and high values of CLTA. Notice that for all covariates except of SIZE, the shape of
the density of bankrupt firms differs from respective shape estimated within the group of
solvent companies. Further empirical analysis (not presented here) shows that distributions
of all covariates except of REVANM are stable over time, and that indicator of dividends
payed can be seen as a potentially powerful predictor of failure.

II.4 Results

The aim of this section is to describe the models fitted to our dataset and evaluate and
compare their forecasting performance. We fit a GLM, transforming covariates accord-
ing to the exploratory analysis in Section II.4.1. We compare it to the generalized linear
mixed model (GLMM) with random, industry-specific intercept, and a GAM. All models
are estimated using the same set of explanatory variables, presented in Section II.3.2. The
three models (GLM, GLMM, GAM) are estimated and validated on different subsets of the
complete sample. To illustrate the discriminative power of our models, we fit them using
financial statements 1996-1999, predict default probabilities in 2000, and construct kernel
density estimates of their logits for bankrupt and solvent firms, respectively. Finally, we
estimate a GLM with Altman’s variables (see Altman (1968)), using only linear transfor-
mations of covariates, and compare it to the models described above. All four models are
estimated in a static and hazard setting, respectively. Their forecasting accuracy does not
improve substantially if the hazard model is used instead of the static one.

(II.6)
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Table II.2: Distribution of bankrupt (B) and non-bankrupt (NB) firms (percent)
according to number of auditor remarks

No. of auditor remarks
Year Status 0 1 2 3 ≥ 4

1996 NB 75.42 22.38 0.57 1.46 1.63
B 11.85 64.22 0.71 18.25 23.22

1997 NB 76.33 21.63 0.52 1.38 1.52
B 15.33 59.80 1.26 18.59 23.62

1998 NB 76.03 21.93 0.55 1.35 1.49
B 13.82 63.09 1.09 17.09 22.00

1999 NB 81.58 17.39 0.85 0.02 0.18
B 23.17 67.20 6.60 0.18 3.03

2000 NB 81.82 17.22 0.81 0.00 0.15
B 23.89 68.14 5.90 0.00 2.06
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Figure II.1: Histogram of AGE. Kernel density estimators of EKA, RetAss, CashR,
SIZE and CLTA for bankrupt (dashed line) and solvent (solid line) firms separately.
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Figure II.2: Estimated transformations of CashR (left, values of CashR below 90%-
quantile), CLTA (middle, values of CLTA below 98%-quantile), and SIZE (right).

II.4.1 Exploratory Data Analysis

In order to make inference about the form of the functional relationship between the logit
of the hazard rate (II.1) and continuous explanatory variables, we fit the GAM

logit λ(t|xit) = β1REVANMit + β2AGEit +
15∑

j=1

β3jDji + β4DIVit

+ s5(CashRit) + s6(CLTAit)

+ s7(SIZEit) + s8(RetAssit) + s9(EKAit)

(II.2)

to the complete dataset. Here Dji, j = 1, . . . , 15, are dummy variables being 1 if firm i
belongs to industry j and 0 otherwise and ŝ5, . . . , ŝ9 are smoothing splines to be estimated.
We observe non-linear relations in the spline terms ŝ5, ŝ7, ŝ8 and ŝ9, i.e. for variables CashR,
SIZE, RetAss and EKA. The ŝ6 term, describing the effect of CLTA on default probability,
can be considered as linear. The forms of the estimated functions are depicted in Figures
II.2 and II.3. For more details regarding the theory of GAM, the reader is referred to
Hastie and Tibshirani (1990).

In Figure II.2 functions ŝ5, ŝ6 and ŝ7 are plotted. Function ŝ5 is plotted for values
of CashR lower than the 90%-quantile, since above that value the form of ŝ5 becomes
unstable, possibly due to outliers. The plot suggests to use the function exp(−CashR) in
a corresponding GLM model. Similarly, ŝ6 is depicted for values of CLTA below the 98%-
quantile. In that range, the estimated function can be considered as linear, and therefore
CLTA enters linearly in our final GLM model. Function ŝ7 is plotted on the whole range
of the covariate SIZE, and we decide to use a polynomial of degree 2 to model its influence
on the default probability.

Visual examination of the left plots in Figure II.3, where ŝ8 and ŝ9 are plotted for the
entire range of variables RetAss and EKA respectively, suggests that possibly separate
functions should be fitted for negative and positive values for two of the covariates con-
sidered. In the middle and right hand side plots of Figure II.3, the estimated functions
are depicted on the negative and positive half axes, respectively. We decide to use a poly-
nomial of degree 3(2) for modeling the influence of negative (positive) values of RetAss,
while the effect of EKA is modeled by 2 separate polynomials of degree 2, each fitted on
the corresponding half axis.

(II.8)
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Figure II.3: Estimated transformation of RetAss (upper) and EKA (lower). Whole
range of RetAss, EKA (left), negative values (middle), positive values (right).

We emphasize here that both the shape of functions we use in our analysis and the list
of explanatory variables should be seen as suggestion. Our recommendation is to carefully
investigate functional relationship of covariates to default probability, and use the results
of exploratory data analysis to build the final model.

II.4.2 Fitted models

We assume that the discrete hazard rate (II.1) depends only on the last value of the
covariates 2, namely

λ(t|xi(t)) := λ(t|xit),

and consider the following three models for λ(t|xit).

Model 1: GLM

2Other specifications of λ(t|xi(t)) that include time-lagged covariates are possible, but rarely used in
practice. Results not reported here indicate that models with λ(t|xi(t)) = λ(t|xit,xit−1) when fitted to
our dataset do not improve forecasting ability.

(II.9)
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The GLM has the form indicated in Section II.4.1, namely

logitλ(r|xit) = β1I(REVANMit > 0) + β2AGEit +

15∑
j=1

β3jDji + β4DIVit

+ β51I(EKAit ≥ 0)EKAit + β52I(EKAit ≥ 0)EKA2
it

+ β53I(EKAit < 0)EKAit + β54I(EKAit < 0)EKA2
it

+ β61SIZEit + β62SIZE2
it + β71I(exp(−CashRit))

+ β81I(RetAssit ≥ 0)RetAssit + β82I(RetAssit ≥ 0)RetAss2it

+ β83I(RetAssit < 0)RetAssit + β84I(RetAssit < 0)RetAss2it

+ β85I(RetAssit < 0)RetAss3it + β9CLTAit

(II.3)

We remark here that all coefficients included in Model (II.3) were significant at the 5%-
level when being estimated from the complete dataset. Analysis not reported here show
that interactions of continuous ratios with industry sector indicators are not significant.
Therefore industry-specific slopes for EKA, RetAss, CashR, SIZE and CLTA are not in-
cluded into our model.

Model 2: GLMM

In order to incorporate homogeneity within industry sectors, while allowing for heterogene-
ity between different sectors, we fit the GLMM with random industry-specific intercept

logitλ(t|xit) = β1I(REVANMit > 0) + β2AGEit +

15∑
j=1

bjDji + β4DIVit

+ β51I(EKAit ≥ 0)EKAit + β52I(EKAit ≥ 0)EKA2
it

+ β53I(EKAit < 0)EKAit + β54I(EKAit < 0)EKA2
it

+ β61SIZEit + β62SIZE2
it + β71I(exp(−CashRit))

+ β81I(RetAssit ≥ 0)RetAssit + β82I(RetAssit ≥ 0)RetAss2it

+ β83I(RetAssit < 0)RetAssit + β84I(RetAssit < 0)RetAss2it

+ β85I(RetAssit < 0)RetAss3it + β9CLTAit

where bj ∼ N(0, σ2), j = 1, . . . , 15, are independent random variables representing the
frailty effect. The model is estimated by the penalized quasi-maximum likelihood method
described in Breslow and Clayton (1993).

Model 3: GAM

Additionally, we compare the previous two models to the GAM indicated in (II.2) which
was used in the exploratory data analysis.

Model 4: Altman

Finally, our three models are compared to the static and hazard model with Altman’s
variables

logit λ(t|xit) = β0 + β1X1it + β2X2it + β3X3it + β4X4it + β5X5it,

(II.10)
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Figure II.4: Kernel density estimators of logits of predicted default probabilities
for data from 2000 using GLM, GLM mixed and GAM model for bankrupt (dashed
line) and solvent (solid line) firms separately (1996-1999 data used to fit the model).

where X1, . . . ,X5 are as defined in Altman (1968) 3.

II.4.3 Predictive performance

The three models, GLM, GLMM and GAM, are fitted to various subsets of our dataset,
and their predictive performance is evaluated. In the assessment of model performance we
use ROC and CAP curve analysis. More specifically, we use the measure of the area under
the ROC curve, denoted AUC. The AUC is the area under the ROC curve and above the
45◦ line corresponding to the random model divided by 1/2 (the area between the ROC
curve of the perfect and random model, respectively). It is a number between zero and one,
one corresponding to the perfect model correctly classifying all firms and zero indicating
the random model. The summary statistic of the CAP curve, the accuracy ratio AR, can
be calculated directly from AUC (see Engelmann et al. (2003)).

Table II.3 shows the AUC for the models GLM, GLMM and GAM, evaluated at different
fitting and prediction periods. We notice that GLM and GAM perform equally well, while
GLMM has a slightly better forecasting accuracy. The lowest values of AUC are obtained
when bankruptcies in 1999 were predicted. This is possibly due to the change in Norwegian
law regarding sanctions for non-reporting of financial statements. Apart from evaluation
of forecasts one year ahead, we have also computed AUC when bankruptcy prediction is
done 2, 3 and 4 years into the future. The results are presented in the lower part of Table
II.3. We observe that although the forecasting accuracy of models decline when we increase
the number of forthcoming years for prediction, the power of the depreciation is not very
pronounced, and the performance of the models can be considered as stable even when
predicting bankruptcies several years into the future.

In order to illustrate the discriminatory power of our models we estimate them using
the data 1996-1999, predict default probabilities for companies at risk in 2000, and plot
kernel density estimates of their logits for bankrupt and solvent firms, respectively. Results
are presented in Figure II.4. We note that all models have relatively high discriminatory
power, and conclude that although plots obtained are suitable for illustration purposes,
one needs more sensitive tools to decide which model has the highest forecasting accuracy.

3To construct the variables X2 and X4 we use the book value instead of market value of equity, since
market information is unavailable.

(II.11)
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Figure II.5: ROC (left) and CAP (right) curve of GLM model, GLM with random
effects, GAM model and model with Altman’s variables for 1-year default-horizont
out-of-time prediction (1996-1999 data used to fit the model, validation on 2000
data).

We then compare the GLM, GLMM and GAM to the model with Altman’s variables.
Both the static and hazard models were fitted using the data from 1996-1999, and validated
on the 2000 data. The corresponding ROC and CAP curves are given in Figure II.5, and the
AUC’s are given in Table II.4. We observe that the forecasting accuracy of the model with
Altman’s variables, in both the static- and hazard setting, is lower than the corresponding
accuracy of models that include non-linear transformations of covariates. Improvements
obtained by utilizing the hazard instead of the static model are not pronounced, possibly
due to the fact that firms in our sample are observed only for 5 years.

II.5 Conclusion and discussion

This paper presents an empirical investigation of bankruptcy prediction using the GLM,
GLMM and GAM, in both the static- and hazard setting. Construction of a proper default
prediction model is of crucial importance to practitioners. Potential applications include
credit risk analysis, development of investment guidelines and rating methodologies, among
others.

We develop empirical bankruptcy prediction models for the limited liability sector in
Norway over the period 1996-2000 using annual balance sheet information. Application of
non-linear modeling techniques allow us to depict complex relationships between the hazard
rate of a firm at risk and its time-varying covariates. The structure of the relationship
is estimated using a GAM. The final GLM (II.3) was constructed after a careful visual
inspection of the plots obtained in the exploratory data analysis. Further, the unobserved
heterogeneity was taken into account by including a random industry-specific intercept
into the model. We utilized the AUC to compare models. While GLM and GAM perform
equally well, the GLMM is shown to have slightly higher ability to anticipate problematic
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Table II.3: Area under the ROC curve for GLM, GLM mixed and GAM models

Prediction 1 year ahead

Prediction in 2000

Data used GLM GLM Mixed GAM
96, 97, 98, 99 0.899 0.901 0.900
97, 98, 99 0.899 0.901 0.901
98, 99 0.894 0.900 0.897
99 0.889 0.896 0.893

Prediction in 1999

Data used GLM GLM Mixed GAM
96, 97, 98 0.891 0.891 0.892
97, 98 0.890 0.891 0.892
98 0.891 0.891 0.893

Prediction in 1998

Data used GLM GLM Mixed GAM
96, 97 0.897 0.905 0.898
97 0.894 0.902 0.894

Prediction in 1997

Data used GLM GLM Mixed GAM
96 0.915 0.918 0.915

Prediction 2 years ahead

Prediction in 1999 and 2000

Data used GLM GLM Mixed GAM
96, 97, 98 0.894 0.895 0.894
97, 98 0.893 0.894 0.895
98 0.892 0.894 0.894

Prediction 3 years ahead

Prediction in 1998, 1999 and 2000

Data used GLM GLM Mixed GAM
96, 97 0.891 0.898 0.890
97 0.888 0.896 0.887

Prediction 4 years ahead

Prediction in 1997, 1998, 1999 and 2000

Data used GLM GLM Mixed GAM
96 0.896 0.903 0.895
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Table II.4: Area under the ROC curve for model with Altman’s variables, GLM,
GLM mixed and GAM static and hazard model.

Model Static Hazard

Altman 0.816 0.830
GLM 0.897 0.899
GLM mixed 0.899 0.901
GAM 0.900 0.900

Note: All models are estimated using the data from 1996 until 1999, and validated on the data from
2000.

firms. Comparisons of models’ forecasting accuracy were performed over different subsets
of the complete sample. Utilization of the hazard instead of static setting does not improve
the models’ performance substantially, probably due to the fact that the maximal period
at risk for firms in our dataset is only 5 years. Additionally, the model with Altman’s
variables was reestimated in both the hazard and traditional static setup. The AUC for
the model with Altman’s variables was substantially lower then the corresponding AUC of
GLM, GLMM and GAM.

Future development of issues addressed in this paper may follow numerous directions.
Primarily, more refined pattern in industry-effects modeling can be introduced by includ-
ing information regarding the intra-industry groupings. The assumption of independence
among firms may possibly be relaxed in the presence of empirical results presented in Lang
and Stulz (1992), Das et al. (2007), Duffie et al. (2006) and references therein. Finally, the
appropriate treatment of firms not reporting their balance sheet information, which were
excluded from our analysis, should be established.
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Abstract

We investigate a copula goodness-of-fit approach based on the conditional prob-
ability integral transform. The approach implicitly weights observations at
corners and edges of the unit hypercube which makes it very powerful at de-
tecting tail heaviness for large sample sizes. However, it is shown to perform
rather poor for small sample sizes. We propose a generalization that allows
for any weighting, making it more robust and more powerful for small sam-
ple sizes. Another weakness is that some deviations from the null hypothesis
may be neglected. We show an example and propose an extension. Results
from extensive Monte Carlo experiments show that our approach keeps pre-
scribed levels well and that certain weighting schemes produce superior power
for three alternative hypotheses. The margins are treated as unknown nuisance
parameters and are replaced by their empirical distribution functions. A para-
metric bootstrap procedure is required to obtain reliable p-value estimates.
Applied to daily log-returns of large cap stock portfolios the Gaussian- and
one-parameter Clayton and Gumbel copulae are all strongly rejected, increas-
ingly so for increasing dimension and sample size. The Student-t copula on the
other hand, provides a good fit, indicating the presence of tail dependence in
the daily log-returns of stock data.
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III.1 Introduction

Copulae have proved to be a very useful tool in the analysis of dependency structures.
The concept of copulae was introduced by Sklar (1959), but was first used for financial
applications by Embrechts et al. (1999). Since then we have seen a tremendous increase
of copula related research and applications. The limitation of the copula approach is the
lack of a recommended way of checking whether the dependency structure of a data set
is appropriately modeled by a chosen family of copulae. Information criterions, such as
Aikaike’s Information Criterion (AIC), are commonly employed for model selection. Such
pure model selection criterions do not provide us with any understanding of the size of
the decision rule employed, nor its power. This means that one can not say how well the
selected family of copulae fits the data. Neither can we say whether one family of copulae
fits the data significantly better than another. A goodness-of-fit (gof) approach on the
other hand, will provide this information.

Copula gof testing recently emerged as a challenging inferential problem and some ap-
proaches have been proposed. Genest et al. (1995) assess the fit of bivariate Archimedean
copulae. Shih (1998), Glidden (1999) and Cui and Sun (2004) test the Clayton model
(also referred to as the gamma frailty model in survival analysis). Breymann et al. (2003),
Chen et al. (2004) and Dobrić and Schmid (2007) apply the conditional probability in-
tegral transformation (cpit) and tests for independence. Malevergne and Sornette (2003)
compare the empirical distribution of the data with a χ2-distribution using a bootstrap
method, testing the Gaussian copula hypothesis for financial asset dependencies. Ferma-
nian (2005) approximates the underlying probability density function by kernel smoothing
of the empirical density. Scaillet (2006) propose a test statistic based on the integrated
squared difference between kernel estimators of the copula density and the parametric cop-
ula density. Dobrić and Schmid (2005) propose a chi-squared- and a likelihood ratio test,
both based on partitioning the probability space. Panchenko (2005) focuses on positive
definite bilinear forms, while Genest and Rémillard (2008) compare the empirical copula
function to the parametric, null hypothesis copula function. Savu and Trede (2004) and
Genest et al. (2006a) assess the cumulative distribution function (cdf) of the copula func-
tion. Finally, Genest et al. (2008) propose an approach based on the cpit and the copula
function.

We will consider in more detail the approach proposed by Breymann et al. (2003),
based on the cpit and henceforth denoted the cpit-approach. The cpit, also known as
Rosenblatt’s transformation, transforms a set of dependent variables into a set of indepen-
dent variables, given the multivariate distribution. Breymann et al. (2003) perform a cpit
under a parametric null hypothesis copula. Then they employ a dimension reduction tech-
nique to the d-variate cpit copula and compute a univariate test statistic on the resulting
univariate vector. Their dimension reduction strongly weights data along the boundaries of
the cpit copula, i.e. corners and edges of the d-dimensional unit hypercube. This makes it
less robust for small sample sizes. We generalize the cpit-approach to allow for any weight
function in the dimension reduction. In addition, the dimension reduction is not consistent
in the sense that some deviations from the null hypothesis may be neglected. We show an
example and propose an extension using an additional cpit, based on order statistics. Our
generalized and extended approach is henceforth denoted the cpit2-approach.

The paper is organized as follows. Section III.2 presents preliminaries. In Section III.3
we introduce copula gof testing, the cpit-approach and our cpit2-approach. In Section
III.4 we present the results from an extensive Monte Carlo study under several weighting
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schemes. The study visualizes the size and power of the cpit2-approach in distinguishing
the Gaussian copula from the Student-t-, Clayton- and Gumbel copulae under various
dimensions and sample sizes. In Section III.5 we apply the best performing weighting
scheme to analyze the dependence structure of the daily log-returns of some large cap
stock portfolios. Finally, Section III.6 summarizes our results and concludes.

III.2 Preliminaries

Suppose we have n samples of the d-variate vector X = (X1, . . . ,Xd). This vector comes
from a population with unknown margins and linking copula C. We wish to test the
hypotheses that the linking copula belongs to some parametric copula family Cθ:

H0 : C ∈ {Cθ; θ ∈ Θ} vs. Ha : C /∈ {Cθ; θ ∈ Θ}.

III.2.1 Empirical Marginals

To extract the copula we transform the vector X into a pseudo-vector Z, through the em-
pirical marginal distribution functions, Zj = (Zj1, . . . , Zjd) = (F̂1(Xj1), . . . , F̂d(Xjd)), j =
1, . . . , n, where

F̂i(x) =
1

n + 1

n∑
j=1

I{Xji ≤ x}. (III.1)

Equivalently, the pseudo-vector can be expressed in terms of normalized ranks,

Zj = (Zj1, . . . , Zjd) =

(
Rj1

n + 1
, . . . ,

Rjd

n + 1

)
, j = 1, . . . , n. (III.2)

Here Rji is the rank of Xji in X1i, . . . ,Xni.

III.2.2 Anderson-Darling test statistic

Suppose we have a random vector W = (w1, . . . , wn) which is iid U(0, 1)n and that the
cdf of W is F (w) = w. The AD statistic is then defined as

T = n

∫ {
F̂ (w) − w

}2

w(1 − w)
dw, w ∈ [0, 1].

The AD statistic strongly weights deviations near w = 0 and w = 1. This is justified since
the experimental deviations are small here due to the constraints {F̂ (w) − F (w)} = 0 at
w = (0, 1) (Aslan and Zech, 2002).

The empirical version of the AD statistic for uniform variables can be shown to be
(Marsaglia and Marsaglia, 2004):

T̂ = −n − 1

n

n∑
j=1

(2j − 1)

{
ln

[
F̂

(
j

n + 1

)]
+ ln

[
1 − F̂

(
n + 1 − j

n + 1

)]}
, (III.3)

where the empirical cdf, F̂ , is given by (III.1).

(III.3)
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III.2.3 The conditional probability integral transform

There are several probability integral transformations, see e.g. D’Agostino and Stephens
(1986) for a discussion. We will consider the transformation proposed by Rosenblatt (1952).
This transformation was denoted the conditional probability integral transform (cpit) by
D’Agostino and Stephens (1986) and it transforms a set of dependent variables into a
new set of independent U(0, 1) variables, given their multivariate distribution. The cpit
is a universally applicable way of creating a set of iid U(0, 1) variables from any data
set with known distribution. Given a test for multivariate, independent uniformity, this
transformation can be used to test the fit of any assumed model.

Definition III.1 (Conditional probability integral transform)
Let Z = (Z1, . . . , Zd) denote a random vector with marginal distributions Fi(zi) = P (Zi ≤
zi) and conditional distributions Fi|1...i−1(Zi ≤ zi|Z1 = z1, . . . , Zi−1 = zi−1) for i =
1, . . . , d. The cpit of Z is defined as T (Z) = (T1(Z1), . . . , Td(Zd)) where

T1(Z1) = P (Z1 ≤ z1) = F1(z1),

T2(Z2) = P (Z2 ≤ z2|X1 = z1) = F2|1(z2|z1),

...

Td(Zd) = P (Zd ≤ xd|Z1 = z1, . . . , Zd−1 = zd−1) = Fd|1...d−1(zd|z1, . . . , zd−1).

The random variables Vi = Ti(Zi), i = 1, . . . , d are uniformly and independently dis-
tributed on [0, 1]d.

A recent application of the cpit is to multivariate gof tests. A cpit is applied to a data
set, assuming a multivariate null distribution, and then a test of multivariate independence
is carried out on the resulting, transformed data set. The null hypothesis in our setting is
a parametric copula family. The parameters of this copula family needs to be estimated
before applying the cpit. We shortly present parameter estimation in Section III.2.4.

An advantage with the cpit in a gof setting is that the null- and alternative hypotheses
are the same, regardless of the distribution before the cpit. The cpit also enables weighting
in a simple way since the data, after the cpit, is i.i.d. U(0, 1) under the null hypothesis.
Hong and Li (2002) report Monte Carlo evidence of multivariate tests using cpit variables
outperforming tests using the original random variables. Chen et al. (2004) believe that a
similar conclusion also applies to gof tests for copulae.

A disadvantage with the cpit is the invariance with respect to the permutation of the
variables since there are d! possible permutations. However, as long as the permutation is
decided randomly, the results will not be influenced in any particular direction. D’Agostino
and Stephens (1986) discuss this issue and propose solutions for some special cases, e.g.
the cpit based on ordered variables, which does not suffer from permutation invariance.
We will consider this in more detail when presenting our cpit2-approach in Section III.3.2.

III.2.4 Parameter estimation

There are two main ways of estimating the parameters of a copula, the fully parametric
method or a semi-parametric method. The fully parametric method, termed the inference
functions for margins (IFM) method (Joe, 1997), relies on the assumption of parametric,
univariate margins. First, the parameters of the margins are estimated and then each
parametric margin is plugged into the copula likelihood which is then maximized with
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respect to the copula parameters. Since we treat the margins as nuisance parameters, we
rather proceed with the pseudo-vector Z and the semi-parametric method. This method
is denoted the pseudo-likelihood (Demarta and McNeil, 2005) or the canonical maximum
likelihood (CML) (Romano, 2002) method and is described in Genest et al. (1995) and in
Shih and Louis (1995) in the presence of censorship. Having obtained the pseudo-vector
Z, using (III.2), the copula parameters can be estimated using either maximum likelihood
(ML) or using the well-known relations to Kendall’s tau (for a survey of copulae and their
relationship with measures of association, see Nelsen (1999)).

For the elliptical copulae in higher dimensions, we pairwise invert the sample Kendall’s
tau. This gives the correlation- and scale matrix for the Gaussian and Student-t copulae,
respectively. For the Student-t copula we also need to estimate the degrees of freedom.
Genest et al. (2008) estimate the scale matrix by inversion of Kendall’s tau but assume
the degrees of freedom to be known/fixed. We rather follow the approach used by Mashal
and Zeevi (2002) and Demarta and McNeil (2005). This is a two-stage approach in which
the scale matrix is first estimated by inversion of Kendall’s tau, and then the pseudo-
likelihood function is maximized with respect to the degrees of freedom, given the estimate
of the scale matrix. For the Archimedean copulae, we consider the so-called exchangeable
construction with one dependency parameter. We estimate this parameter by numerically
maximizing the pseudo-likelihood.

III.3 Copula goodness-of-fit testing

For univariate distributions, the gof assessment can be performed by e.g. the well-known
Anderson-Darling (Anderson and Darling, 1954) test, or less quantitatively using a QQ-
plot. In the multivariate domain there are fewer alternatives. Economic theory sheds little
light on the dependence structure between financial assets, and multivariate normality
is often assumed a priori. Evidence shows, however, that more appropriate dependence
structures are available (Chen et al., 2004; Dobrić and Schmid, 2005).

Several approaches (e.g. Breymann et al. (2003); Genest et al. (2006a)) project the
multivariate problem to a univariate problem applying some dimension reduction tech-
nique and then compute a univariate test statistic. This leads to numerically efficient
algorithms even for problems of high dimension. Any univariate statistic may be used, e.g.
Kolmogorov-Smirnov, Anderson-Darling, Cramér-von Mises or kernel smoothing based L2
statistics. For a thorough treatment of these and other statistics we refer to D’Agostino
and Stephens (1986). In this paper we focus on the Anderson-Darling (AD) statistic.

For copula gof testing we are interested in the fit of the copula alone, hence the mar-
gins are commonly treated as nuisance parameters. I.e. we use empirical margins (or
equivalently, normalized ranks). The use of empirical margins will alter the asymptotics
of any test statistic. In addition, since we are testing a hypothesized, parametric, copula,
parameter estimation error will influence the asymptotics. Breymann et al. (2003) fail to
recognize these issues. They assume that the limiting distribution of their statistic is the
same whether the margins and parameters are estimated or not. As a result, the p-values
that they report are not correct. This erroneous assumption is pointed out by Genest
and Rémillard (2008). It is also thoroughly investigated by Dobrić and Schmid (2007)
who modify the test procedure by Breymann et al. (2003) such that the p-value estimates
become reliable. Henceforth, when referring to the approach by Breymann et al. (2003),
the cpit-approach, we mean the approach proposed by Breymann et al. (2003) but using
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the test procedure of Dobrić and Schmid (2007).

III.3.1 The cpit-approach

The approach proposed by Breymann et al. (2003) is a generalization of the approach
proposed by Malevergne and Sornette (2003) which corresponds to the special case of
testing the Gaussian copula null hypothesis. It is a dimension reduction approach and we
will denote the test observator by G.

The testing is based on the pseudo-vector Z, see (III.2). A cpit is applied to Z, assuming
a null hypothesis copula Cθ. The d-variate vector V = (V1, . . . , Vd), resulting from the
cpit, is i.i.d. U(0, 1)d under the null hypothesis. Due to parameter- and margin estimation
errors, this is only close to, but not exactly true. We will consider this issue in Section
III.3.3. Until then we assume that this holds. The dimension reduction is now performed
as

WG =

d∑
i=1

Φ−1(Vi)
2. (III.4)

The variable WG should, under the null hypothesis, be χ2
d distributed. The test observator

G can now be defined.

Definition III.2 (Cpit test observator G)
Let WG be defined by (III.4) and Fχ2

d
(·) be the χ2

d cdf. G(w) is then defined as the cdf of

Fχ2
d
(WG):

G(w) = P [Fχ2
d
(WG) ≤ w].

Under H0, all Vi are i.i.d. U(0, 1), hence G(w) = w and the density of G(w) is g(w) = 1.

Suppose we have n samples of V, vj = (vj1, . . . , vjd), j = 1, . . . , n. After performing
the dimension reduction in (III.4), we have n samples of WG. The empirical version of the
approach then becomes

Ĝ(w) =
1

n + 1

n∑
j=1

I{Fχ2
d
(WG,j) ≤ w}, w =

1

n + 1
, . . . ,

n

n + 1
.

In the cpit-approach Ĝ(w) is plugged in for F̂ (w) in the expression for the AD statistic
(III.3).

The cpit-approach is computationally very efficient and conceptually simple. However,
it has its weaknesses. First of all, the dimension reduction, through the use of Φ−1(·)2,
strongly weights data along the boundaries of the d-dimensional unit hypercube. This may
be appropriate when the sample size is large. However, for small sample sizes, this weighting
makes the approach less robust and less powerful since there will be few observations in
the boundary regions. We will see the effects of this in Section III.4. In addition, some
deviations from the null hypothesis may be overlooked by the cpit-approach. Figure III.1
shows three constructed bivariate data sets, one that is independent in the left panel and
two that are clearly dependent in the center- and right panels. Recall the null hypothesis
of independence. We thus wish for the lack of independence in these panels to be detected.
However, G(w) will be exactly the same for all three data sets. The explanation is that a
value of 0.2 and a value of 0.8 will both contribute with the exact same value to WG, since
Φ−1(0.2)2 = Φ−1(0.8)2. Hence, we suspect the approach to perform poor in cases where
the cpit data set is radially asymmetric.
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III.3. Copula goodness-of-fit testing 49

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v1

v 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v1

v 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v1

v 2

Figure III.1: Three U(0, 1)2 data sets, one that is independent (left panel) and
two that are clearly dependent (center- and right panels). Ĝ(w) is equivalent for all
three.
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III.3.2 The cpit2-approach: a generalization and extension

With the weaknesses of the cpit-approach in mind, we propose a new approach, denoted
the cpit2-approach. This approach generalizes and extends the cpit-approach. First, any
weight function can be employed in the dimension reduction (III.4). In addition, through
the use of an additional cpit, based on order statistics, we are able to detect radial asym-
metry in the cpit data as illustrated in Figure III.1.

We interpret the problem of multivariate gof testing as follows. To perform a gof
assessment of a multivariate data set we can essentially perform two univariate gof tests.
First, we test the fit in the d-space, e.g. through some dimension reduction technique such
as (III.4). The result of this first, univariate, gof test is n values of a test statistic. If
we know the distribution of these n samples, under the null hypothesis, we can perform
another, univariate, gof test in the n-space. This will give us the desired test statistic for
the multivariate problem. In what follows we are mainly concerned with the first gof test,
in the d-space. For the second, in the n-space, we use the Anderson-Darling statistic, as
in the cpit-approach.

We first perform the cpit on the original copula data set Z. The resulting data V

should be i.i.d. U(0, 1)d under the null hypothesis. We now propose to test whether this is
true, i.e. an additional test in the d-space, testing for independent uniformity of V. This
problem is well known and is discussed in great detail in D’Agostino and Stephens (1986).
They suggest a cpit, based on ordered variables, that will be permutation invariant. Thus,
we perform a regular cpit first, on Z, and then a second cpit on V which is based on the
order statistics of V.

As before, let V = (V1, . . . , Vd) be the i.i.d. U(0, 1)d random vector, obtained from
applying the cpit to Z. For d = 1, 2, . . . , we denote the order statistics of V1, . . . , Vd by

V(1) ≤ V(2) ≤ · · · ≤ V(d−1) ≤ V(d).

If V(1), . . . , V(d) are the order statistics of a sample from a U(0, 1) parent distribution, then
V(i) is a beta distributed variable with parameters (i, d−(i−1)) (D’Agostino and Stephens,
1986, ch. 8). To compute the expressions for the order statistic cpit, we resort to David
(1981, Theorem 2.7) who shows the Markov nature of the order statistics. Using Deheuvels
(1984, Theorem 1) and the fact that V is an i.i.d. U(0, 1)d random vector under the null
hypothesis, we obtain the following expression for the order statistic cpit of V :

Hi = FV(i)|V(i−1)
(v(i)) = 1 −

(
1 − v(i)

1 − v(i−1)

)d−(i−1)

, i = 1, . . . , d, v(0) = 0. (III.5)

Intuitively, poor fit in the d-space is indicated by extreme values of H. Any H too low or
too high can indicate a poor fit (Glen et al., 2001). We can now conduct the dimension
reduction based on V and H:

WB =

d∑
i=1

ΓV (V(i);α) · ΓH(Hi;α), (III.6)

where ΓV and ΓH are weight functions used for weighting the information in V and H,
respectively, and α is the set of weight parameters. Any weight function may be used,
depending on the use and the region of the copula one wishes to emphasize. Some obvious
candidates for both ΓV (X;α) and ΓH(X;α) are:
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(i) Φ−1(X)2,

(ii) |X − 0.5|,

(iii) (X − 0.5)α, α = (2, 4, . . .).

Consider for example the special case ΓV (X;α) = Φ−1(X)2 and ΓH(X;α) = 1. We then
obtain (III.4), the cpit-approach. Since both V and H are i.i.d. U(0, 1)d under the null
hypothesis we have the following result. By choosing ΓV (X;α) = 1 and ΓH(X;α) =
Φ−1(X)2, WB in (III.6), as for (III.4), should follow a χ2

d distribution under the null
hypothesis. However, in general, the distribution of WB is not known and we must turn to
a double bootstrap to approximate the cdf. Suppose we have computed WB, using some
weight functions ΓV (·;α) and ΓH(·;α). Now we simply draw d i.i.d. U(0, 1) variables Ṽ ,

compute H̃ and W̃B using the same weight functions as for WB. By repeating this a large
number of times (10000 times in this paper), we can approximate the cdf of WB, FB , under
the null hypothesis. Again, as for WG, WB is only close to, but not exactly distributed
according to FB . This discussion is deferred to Section III.3.3. Our new test observator B
can now be defined.

Definition III.3 (Cpit2 test observator B)
Let WB be defined by (III.6) and FB(·) be the cdf of WB . B(w) is then defined as the cdf
of FB(WB):

B(w) = P [FB(WB) ≤ w].

Under H0, all Vi are i.i.d. U(0, 1), hence B(w) = w and the density of B(w), b(w) = 1.

Suppose we have n samples of V, vj = (vj1, . . . , vjd), j = 1, . . . , n. The empirical
version then becomes

B̂(w) =
1

n + 1

n∑
j=1

I{FB(WB,j) ≤ w}, w =
1

n + 1
, . . . ,

n

n + 1
, (III.7)

which can be plugged in for F̂ (w) in the expression for the AD statistic (III.3).

To summarize our cpit2-approach, we have performed two cpit’s, the first to Z and
the second to the order statistics of V. By doing this additional order statistic cpit, our
dimension reduction approach becomes more robust to phenomena like the one in Figure
III.1. For the data sets in Figure III.1 we obtain G(w) = (0.91, 0.91, 0.91) for the left-,
center- and right panels, respectively, using the AD statistic. With the cpit2-approach,
using ΓV (X;α) = 1 and ΓH(X;α) = Φ−1(X)2, we obtain B(w) = (0.36, 66.46, 111.62).
We clearly see that our extension H detects the asymmetry. Figures III.2-III.4 show WB

as a surface, with respect to the cpit data set V and we see that the cpit-approach heavily
emphasizes the boundaries. The use of the cpit2-approach, with weight combination (ii)
still emphasizes these regions but less extremely. We also see that the ΓH term adds weight
to the diagonal as well. This is why this extension will help detect radial asymmetry in
the cpit data. Finally, the generalization adds flexibility and robustness to small sample
sizes. Both weight functions for the dimension reduction, ΓV and ΓH , can be decided
freely, depending on the specific use.

(III.9)
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v1

v2

W

Figure III.2: Weight (WB) surface with respect to cpit data, V. Data generating
process is the Gaussian copula (ρ = 0.71, corresponding to a Kendall’s tau of 0.5)
and we perform the cpit assuming the true null hypothesis of a Gaussian copula.
Weight combination: ΓV (X;α) = Φ−1(X), ΓH(X;α) = 1.

v1

v2

W

Figure III.3: Weight (WB) surface with respect to cpit data, V. Data generating
process is the Gaussian copula (ρ = 0.71, corresponding to a Kendall’s tau of 0.5)
and we perform the cpit assuming the true null hypothesis of a Gaussian copula.
Weight combination: ΓV (X;α) = |X − 0.5|, ΓH(X;α) = 1.

(III.10)
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v1

v2

W

Figure III.4: Weight (WB) surface with respect to cpit data, V. Data generating
process is the Gaussian copula (ρ = 0.71, corresponding to a Kendall’s tau of 0.5)
and we perform the cpit assuming the true null hypothesis of a Gaussian copula.
Weight combination: ΓV (X;α) = |X − 0.5|, ΓH(X;α) = |X − 0.5|.

III.3.3 Testing Procedure

In Section III.3.1 we assume that WG in (III.4) follow a χ2
d distribution. Similarly, in

Section III.3.2 we assume that the distribution of WB in (III.6) can be approximated by a
double bootstrap procedure. The estimation of the margins and the parameters of the null
copula, introduces dependence in the cpit data. Hence, WG is only close to, but not exactly
χ2

d distributed. Similarly, WB is only close to, but not exactly distributed according to FB .

To cope with this issue and obtain a proper estimate of the p-value of the observed
statistic, one should perform a parametric bootstrap procedure, where both margin- and
parameter estimation effects are accounted for. We adopt the parametric bootstrap pro-
cedure used in Genest et al. (2006a), the validity of which is established in Genest and
Rémillard (2008). Dobrić and Schmid (2007) propose a very similar procedure in their
modification of the original procedure used in Breymann et al. (2003). The asymptotic va-
lidity of the bootstrap procedure, applied to our test observator, has not yet been proved.
However, our numerical results in Section III.4 strongly indicates that the procedure is
valid.

Suppose we have a sample x, n observations of the d-variate vector X. The testing
procedure for the cpit2-approach is then as given below. Remember that the cpit-approach
is a special case, hence the same test procedure can be applied for this approach. Note the
use of empirical margins (normalized ranks) in step (1) and (9a), the parametric bootstrap
procedure in step (9) and the double bootstrap procedure in steps (6) and (9f).

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn)
into normalized ranks according to (III.2).

(III.11)
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(2) Estimate the parameters Θ of the null hypothesis copula, by a consistent estimator
Θ̂ = L̂(z1, . . . , zn).

(3) Compute the cpit sample data (v1, . . . ,vn) by applying the cpit to (z1, . . . , zn) as-
suming the parametric null hypothesis copula C

Θ̂
.

(4) Compute the cpit2 sample data (h1, . . . ,hn) by applying the cpit (III.5) to (v1, . . . ,vn).

(5) Compute WB according to (III.6), using weight functions ΓV and ΓH .

(6) If WB follows a known distribution under the null hypothesis, compute FB(WB)
accordingly. If not, approximate FB as follows. For some large integer m, repeat the
following steps for every l ∈ {1, . . . ,m}:

(i) Generate a random sample (v∗1,l, . . . , v
∗
d,l) from the null hypothesis copula, namely

an i.i.d. U(0, 1)d vector.

(ii) Compute (h∗
1,l, . . . , h

∗
d,l) by applying the cpit (III.5) to (v∗1,l, . . . , v

∗
d,l).

(iii) Compute Ŵ ∗
B,l according to (III.6) using the same weight functions as in step

(5).

(iv) Compute FB(W ) = 1
m+1

∑m
l=1 I(Ŵ ′

B,l > ŴB).

(7) Compute B̂(w) according to (III.7).

(8) The estimated AD statistic T̂ is obtained by plugging B̂(w) into (III.3).

(9) For some large integer Nb, repeat the following steps for every k ∈ {1, . . . , Nb}:

(a) Generate a random sample (x∗
1,k, . . . ,x∗

n,k) from the null hypothesis copula C
Θ̂

and compute the associated pseudo-samples (z∗1,k, . . . , z∗n,k) according to (III.2).

(b) Estimate the parameters Θ, of the null hypothesis copula, with Θ̂∗
k = L̂(z∗1,k, . . . , z∗n,k).

(c) Compute the cpit sample data (v∗
1,k, . . . ,v

∗
n,k) by applying the cpit to (z∗1,k, . . . , z∗n,k),

assuming the parametric null hypothesis copula CΘ̂∗

k
.

(d) Compute the cpit2 sample data (h∗
1,k, . . . ,h

∗
n,k) by applying the cpit (III.5) to

(v∗
1,k, . . . ,v

∗
n,k).

(e) Compute W ∗
B,k according to (III.6), using the same weight functions as in step

(5).

(f) If W ∗
B,k follows a known distribution, compute FB(WB) accordingly. If not,

approximate FB as follows. For some large integer m, repeat the following steps
for every l ∈ {1, . . . ,m}:
(i) Generate a random sample (v∗∗1,l,k, . . . , v

∗∗
d,l,k) from the null copula, an i.i.d.

U(0, 1)d vector.

(ii) Compute (h∗∗
1,l,k, . . . , h

∗∗
d,l,k) by applying the cpit (III.5) to (v∗∗1,l,k, . . . , v

∗∗
d,l,k)

(iii) Compute Ŵ ∗∗
B,l,k according to (III.6) using the same weight functions as in

step (5).

(iv) Compute FB(W ∗∗
B ) = 1

m+1

∑m
k=1 I(Ŵ ∗∗

B,l,k > Ŵ ∗
B,k).

(g) Compute B̂∗
k(w) according to (III.7).
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(h) The estimated AD statistic T̂ ∗
k is obtained by plugging B̂∗

k(w) into (III.3).

(10) An approximate p-value for the cpit2 test observator B is then given by

p̂ =
1

Nb + 1

Nb∑
k=1

I(T̂ ∗
k > T̂ ).

Steps 6 − 9 may seem abundant and arbitrary. We could have used the WB ’s directly
and performed some test of its distribution. However, the distribution of WB is usually
not known and numerical- or simulation procedures are needed to approximate FB .

III.4 Monte Carlo study

By performing so-called mixing tests we examine the ability of the cpit2-approach to keep
nominal sizes and detect tail heaviness and skewness properties. The tests are performed
by mixing a Gaussian copula with an alternative copula to construct a mixed copula CMix:

CMix = (1 − β) · CGa + β · CAlt, β ∈ [0, 1],

where β is the mixing parameter, CGa denotes the Gaussian copula and CAlt denotes the
alternative copula. For β = 0, CMix = CGa while for β = 1, CMix = CAlt. For 0 < β < 1
we sample from the Gaussian copula with probability (1 − β) and from the alternative
copula with probability β.

The alternative copulae considered in this paper are the Student-t-, Clayton- and Gum-
bel copulae. The ability to distinguish the Gaussian from the Student-t copula indicates
the power at detecting lower and upper tail dependency, while the ability to distinguish the
Gaussian from the Clayton- and Gumbel copulae indicates the power at detecting lower
and upper tail dependency, respectively. For all copulae, the dependency parameter is set
to correspond to a Kendall’s tau of 0.2, i.e. a weak level of dependence. This should make
the various copulae hard to distinguish. For the Student-t copula, the degree of freedom
ν, is set to 4, i.e. very heavy tails. For the Gaussian copula, the upper and lower tail
dependencies are both 0 while for the Student-t copula the lower and upper tail depen-
dencies, for a Kendall’s tau of 0.2, both equal 0.17. For the Clayton copula the lower- and
upper tail dependencies equal 4 and 0, respectively. Finally, for the Gumbel copula, the
lower- and upper tail dependencies equal 0 and 0.26, respectively. See Nelsen (1999) for
the definition of tail dependency.

For the cpit-approach we examined all possible combinations of the weight functions
ΓV (X;α) and ΓH(X;α), listed in Section III.3.2, namely Φ−1(X)2, |X − 0.5|, (X −
0.5)α, α = (2, 8, 20). Note again that the cpit-approach is a special case of the cpit2-
approach, with ΓV (X;α) = Φ−1(X)2 and ΓH(X;α) = 1.

Our null hypothesis is that the mixed copula is a Gaussian copula. T̂ and the corre-
sponding estimate of the p-value is computed according to the test procedure in Section
III.3.3, using Nb = 500 for the parametric bootstrap and m = 10000 for the double boot-
strap. The entire procedure is repeated Nmix = 2000 times in order to obtain rejection
rates and corresponding power curves. The resulting rejection rates for the best performing
weight combinations (at β = 1), are given in Tables III.1-III.3. The weight combination
corresponding to the cpit-approach is also included for comparison, although it did not
perform very well compared to other combinations.

(III.13)



56 Paper III. A copula goodness-of-fit test

First, we examine the effect of dimension and sample size. For all combinations of ΓV

and ΓH , the power increases with dimension and sample size, as expected and visualized
in Figure III.5. We next examine the nominal levels, i.e. the rejection rates for β = 0,
and they all roughly match the prescribed level of 5%. This indicates the validity of
our bootstrap procedure. Finally, for all combinations of d = (2, 5), n = (125, 250, 500)
and CAlt =(Student-t, Clayton, Gumbel), we examine the power. The best combinations
varies with dimension, sample size and whether we consider lower-, upper- or both lower
and upper tail dependency. All over, the combinations

(i) ΓV (X;α) = |X − 0.5|, ΓH(X;α) = 1 and

(ii) ΓV (X;α) = (X − 0.5)2, ΓH(X;α) = 1

stand out as superior. I.e. combinations where we only consider the cpit data V, however
with a different weight function than the one in the cpit-approach. When the alternative
copula is the Student-t copula, the combinations

(iii) ΓV (X;α) = (X − 0.5)8, ΓH(X;α) = 1 and

(iv) ΓV (X;α) = (X − 0.5)8, ΓH(X;α) = |X − 0.5|

perform equally well as combinations (i) and (ii). For this case, the cpit-approach also
perform quite well. If the alternative copula is either the Clayton- or the Gumbel copula,
combinations (i) and (ii) are, by far, the best. In addition, the combinations

(v) ΓV (X;α) = 1, ΓH(X;α) = Φ−1(X)2,

(vi) ΓV (X;α) = 1, ΓH(X;α) = (X − 0.5)α, α = (2, 8, 20) and

(vii) ΓV (X;α) = |X − 0.5|, ΓH(X;α) = |X − 0.5|

perform quite well.
Consider the particular case where we have very few samples, i.e. n = 125, and high

dimension, i.e. d = 5 and the alternative copula is the Clayton copula. In this case the
ΓH term adds power compared to combinations only includingthe ΓV term. However, for
large sample sizes (i) and (ii) are superior.

Figure III.6 illustrates the difference in power for some combinations. We see that the
cpit-approach (ΓV (X;α) = Φ−1(X)2, ΓH(X;α) = 1) has quite low power in some cases,
while the cpit2-approach with weight combinations (i), (ii) and several other combinations
perform better.

III.5 Application

The choice of dependency structure can have big impacts in several applications, e.g.
capital allocation and the pricing of credit derivatives, such as basket default swaps. We
analyze the dependency structure of stock portfolios by looking at their daily log-returns.
The historical data consists of 1000 samples of 45 large cap stocks from the New York
Stock Exchange, spanning the period from January 13th, 2003 to December 29th, 2006.

Asset collections of dimension 2 and 5 were randomly selected 2000 times from the full
data set. As in Chen et al. (2004) and Panchenko (2005) we examine the raw returns and
the GARCH(1, 1) filtered returns, i.e. each individual assets return is filtered through a

(III.14)
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(a) Effect of n, the sample size. CAlt = Ct4 ,
ΓV (x) = |x − 0.5|, ΓH(x) = 1, d = 5.
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(b) Effect of d, the dimension. CAlt = Ct4 ,
ΓV (x) = |x − 0.5|, ΓH(x) = 1, n = 500.

Figure III.5: Power curves for the approach B, for varying sample sizes and di-
mension. On the x-axis we see the mixing parameter β, while on the y-axis we
see the portion of times the Gaussian copula (i.e. the null copula) is rejected. 5%
significance level.
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ΓV(X)=Φ−1(X)2, ΓH(X)=1
ΓV(X)=|X − 0.5|, ΓH(X)=1
ΓV(X)=(X − 0.5)2, ΓH(X)=1

(a) d = 2, n = 250, CAlt is Student-t.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β

R
ej

ec
tio

n 
ra

te

ΓV(X)=Φ−1(X)2, ΓH(X)=1
ΓV(X)=|X − 0.5|, ΓH(X)=1
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(b) d = 5, n = 500, CAlt is Clayton.

Figure III.6: Power curves for the approach B, comparing various weight combi-
nations (ΓV , ΓH). On the x-axis we see the mixing parameter β, while on the y-axis
we see the portion of times the Gaussian copula (i.e. the null copula) is rejected.
5% significance level.
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Table III.1: Percentage rejection (5% level) of the Gaussian copula under various
dimensions, sample sizes and weight combinations.

d n ΓV (X), ΓH(X)
β

0 0.25 0.5 0.75 1

2 125 Φ−1(X)2, 1 4.93 2.71 2.22 3.00 6.06
|X − 0.5|, 1 5.67 4.93 7.24 8.72 16.45
(X − 0.5)2, 1 5.67 4.24 6.95 9.51 16.16
(X − 0.5)8, 1 4.63 2.86 2.51 3.3 7.34
(X − 0.5)8, |X − 0.5| 5.17 3.00 1.92 2.86 6.31

250 Φ−1(X)2, 1 4.83 2.81 4.68 10.44 23.65
|X − 0.5|, 1 4.29 6.31 11.48 20 36.50
(X − 0.5)2, 1 4.88 5.52 11.38 21.77 40.44
(X − 0.5)8, 1 4.53 3.30 4.88 12.81 28.62
(X − 0.5)8, |X − 0.5| 5.02 3.10 3.84 11.97 26.11

500 Φ−1(X)2, 1 5.42 4.73 15.12 38.33 67.88
|X − 0.5|, 1 5.22 8.03 20.15 42.46 69.01
(X − 0.5)2, 1 5.12 7.93 21.72 48.92 77.00
(X − 0.5)8, 1 5.22 4.83 15.07 38.33 66.6
(X − 0.5)8, |X − 0.5| 5.57 4.24 13.84 34.19 64.19

5 125 Φ−1(X)2, 1 4.58 1.13 12.71 42.96 79.85
|X − 0.5|, 1 5.76 4.78 15.91 37.49 64.58
(X − 0.5)2, 1 5.81 5.91 22.41 52.51 81.92
(X − 0.5)8, 1 4.48 3.10 20.49 56.55 87.83
(X − 0.5)8, |X − 0.5| 4.53 1.87 14.53 45.96 82.07

250 Φ−1(X)2, 1 4.48 6.06 52.41 95.07 100.00
|X − 0.5|, 1 5.02 9.85 39.70 81.33 97.93
(X − 0.5)2, 1 4.63 13.00 56.6 93.94 99.85
(X − 0.5)8, 1 5.57 10.94 63.15 96.70 100.00
(X − 0.5)8, |X − 0.5| 4.93 8.67 53.55 93.69 99.9

500 Φ−1(X)2, 1 5.57 26.9 95.86 100.00 100.00
|X − 0.5|, 1 5.47 23.69 80.99 99.46 100.00
(X − 0.5)2, 1 5.52 32.32 93.45 100.00 100.00
(X − 0.5)8, 1 5.62 36.16 96.75 100.00 100.00
(X − 0.5)8, |X − 0.5| 4.88 29.01 94.19 100.00 100.00

Note: The alternative hypothesis is the Student-t copula with 4 degrees of freedom. The dependency
parameter corresponds to a Kendall’s tau of 0.2.
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Table III.2: Percentage rejection (5% level) of the Gaussian copula under various
dimensions, sample sizes and weight combinations.

d n ΓV (X), ΓH(X)
β

0 0.25 0.5 0.75 1

2 125 |X − 0.5|, 1 5.32 4.93 4.68 4.78 6.40
(X − 0.5)2, 1 5.62 5.32 4.58 4.58 5.12
|X − 0.5|, |X − 0.5| 5.67 5.02 4.43 4.29 4.48
|X − 0.5|, (X − 0.5)2 5.32 5.22 4.98 4.38 5.12
1, |X − 0.5| 5.76 6.06 6.45 5.71 6.40

250 |X − 0.5|, 1 5.37 5.02 6.11 6.55 6.75
(X − 0.5)2, 1 5.62 4.73 5.17 5.17 5.57
|X − 0.5|, |X − 0.5| 4.48 6.06 5.27 4.63 5.32
|X − 0.5|, (X − 0.5)2 4.68 5.32 4.98 4.58 4.43
1, |X − 0.5| 5.42 6.01 5.27 6.55 7.29

500 |X − 0.5|, 1 4.04 4.53 6.16 8.03 9.61
(X − 0.5)2, 1 4.38 4.53 6.11 6.90 7.83
|X − 0.5|, |X − 0.5| 4.58 4.58 6.21 4.68 6.90
|X − 0.5|, (X − 0.5)2 4.43 4.78 5.12 5.62 5.81
1, |X − 0.5| 5.27 5.52 6.75 7.14 8.62

5 125 |X − 0.5|, 1 4.29 5.22 5.02 6.45 5.62
(X − 0.5)2, 1 5.42 4.24 3.74 4.73 4.48
|X − 0.5|, |X − 0.5| 4.78 5.91 5.37 6.21 6.70
|X − 0.5|, (X − 0.5)2 4.53 6.06 5.57 7.00 6.85
1, |X − 0.5| 5.07 5.86 5.22 5.71 5.47

250 |X − 0.5|, 1 4.33 5.37 6.11 8.18 11.63
(X − 0.5)2, 1 4.68 4.88 4.19 6.26 8.92
|X − 0.5|, |X − 0.5| 4.83 5.12 6.50 7.24 10.20
|X − 0.5|, (X − 0.5)2 4.53 5.52 6.90 7.83 11.77
1, |X − 0.5| 5.57 4.93 5.91 6.35 7.54

500 |X − 0.5|, 1 5.37 5.27 8.67 12.61 19.36
(X − 0.5)2, 1 4.93 5.12 7.04 11.58 18.77
|X − 0.5|, |X − 0.5| 5.07 6.70 7.83 11.03 16.01
|X − 0.5|, (X − 0.5)2 5.37 6.75 8.23 11.08 17.73
1, |X − 0.5| 5.42 5.57 7.04 7.29 8.62

Note: The alternative hypothesis is the Clayton. The dependency parameter corresponds to a
Kendall’s tau of 0.2.
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Table III.3: Percentage rejection (5% level) of the Gaussian copula under various
dimensions, sample sizes and weight combinations.

d n ΓV (X), ΓH(X)
β

0 0.25 0.5 0.75 1

2 125 |X − 0.5|, 1 5.91 4.88 5.71 6.06 6.55
(X − 0.5)2, 1 6.16 4.88 5.76 5.02 5.37
1, Φ−1(X)2 5.96 5.22 4.88 4.58 4.73
1, (X − 0.5)8 5.91 5.71 4.58 4.98 5.07

250 |X − 0.5|, 1 5.07 5.27 5.91 6.75 8.37
(X − 0.5)2, 1 5.67 4.78 4.93 5.52 6.90
1, Φ−1(X)2 4.93 5.57 5.22 4.19 4.63
1, (X − 0.5)8 5.22 5.17 5.91 3.99 4.73

500 |X − 0.5|, 1 5.52 6.40 6.75 9.85 12.51
(X − 0.5)2, 1 5.27 5.22 6.75 9.06 12.32
1, Φ−1(X)2 5.32 5.12 5.07 5.22 6.11
1, (X − 0.5)8 5.22 5.12 5.17 5.42 5.67

5 125 |X − 0.5|, 1 4.68 4.09 4.29 4.14 3.94
(X − 0.5)2, 1 4.88 4.09 3.30 3.15 3.60
1, Φ−1(X)2 5.32 6.06 4.98 5.22 5.17
1, (X − 0.5)8 5.22 5.76 4.93 5.07 4.68

250 |X − 0.5|, 1 5.22 4.04 3.99 5.27 6.60
(X − 0.5)2, 1 5.07 4.04 4.29 4.88 7.00
1, Φ−1(X)2 5.71 4.63 5.47 5.42 5.52
1, (X − 0.5)8 5.32 5.37 5.76 5.71 5.47

500 |X − 0.5|, 1 4.63 4.24 4.98 8.33 12.81
(X − 0.5)2, 1 4.53 3.65 5.57 9.41 17.09
1, Φ−1(X)2 4.98 5.57 5.32 6.06 7.44
1, (X − 0.5)8 6.06 4.83 4.53 6.11 6.50

Note: The alternative hypothesis is the Gumbel copula. The dependency parameter corresponds to a
Kendall’s tau of 0.2.
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standard GARCH(1, 1) process. This filtering is done to remove serial dependence in each
individual time series. For details of GARCH processes, see e.g. Bollerslev (1986). We fit
the Gaussian-, Student-t-, Clayton- and Gumbel copulae to the portfolios and apply the
cpit2-approach, with ΓV (X;α) = |X − 0.5| and ΓH(X;α) = 1, to investigate how often
each copula is rejected.

Table III.4 shows the rejection rates for the raw and filtered returns. We see that for all
but the Student-t copula, the rejection rate is increasing with sample size. For d = 5 the
rejection rates for the Clayton- and Gumbel copulae are very high. This is not surprising
since we are only considering the so-called exchangeable Clayton- and Gumbel copulae,
having only one dependency parameter. Fitting a 5-dimensional distribution with only
one parameter is usually not sufficient. The Gaussian copula is not that easily rejected for
small sample sizes in the bivariate case. However, for higher dimensions and sample sizes,
we see that the Gaussian copula is strongly rejected for both raw and filtered returns. The
Student-t copula seems to provide a very good fit for all dimensions and sample sizes and
for both raw and filtered returns. It is not surprising that the Student-t copula outperforms
the other copulae since it has more parameters. Nevertheless, the low rejection rates for
the Student-t copula are interesting. Also, note the reduced rejection rates in most cases
for the filtered returns. This is also expected since serial dependence is removed.

III.6 Concluding remarks

We have generalized and extended the copula gof approach proposed by Breymann et al.
(2003). The main contribution is the flexibility in the dimension reduction function. The
generalization enables the user to apply any weight function combination to the cpit data
sets V and H, depending on the use. The additional cpit step, based on order statistics,
should make the dimension reduction more robust to the inconsistency issue illustrated in
Figure III.1. We have not been able to reconstruct the inconcistency issue in our Monte
Carlo study, except when the alternative copula is the Clayton copula, for d = 5, n = 125
where the ΓH term seems to add power. However, the added power in this case may also
be due to the high dimension and very few samples. Neither have we found a real world
data set where this issue manifests itself. However, the danger of this issue coming into
play will always be there, justifying our extension.

Monte Carlo results show that our approach keeps the prescribed nominal level for all
weight combinations examined. We also see that the cpit-approach has low power in some
circumstances, particularly for low sample sizes. The reason is that the dimension reduction
strongly weights the boundaries of the d-dimensional unit hypercube. If we have few
samples there are few observations in the boundary regions and the cpit-approach becomes
less robust and less powerful. An important result is the superior performance, in all our
numerical tests, of the two weight combinations (i): ΓV (X;α) = |X − 0.5|, ΓH(X;α) =
1 and (ii): ΓV (X;α) = (X − 0.5)2, ΓH(X;α) = 1. Hence, based on our numerical
experiments, these combinations are recommended. For skewness properties, it may seem
like the additional ΓH term has some effect, in particular for higher dimensions and small
sample sizes. With the inconsistency issue from Figure III.1 in mind, the additional use of
ΓV (X;α) = |X − 0.5|, ΓH(X;α) = |X − 0.5| is recommended.

Application of the cpit2-approach to a collection of large cap stock portfolios show
that the Student-t copula provide a fairly good fit to the data while the Gaussian copula
is strongly rejected for higher dimensions. A GARCH(1,1) filtering of the original data
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Table III.4: Percentage rejection (5% level) of the Gaussian-, Student-t and one-
parameter Clayton- and Gumbel copulae applied to daily log-returns of large cap
stock portfolios.

Copula Dimension Sample size Raw returns Filtered returns

Gaussian 2 250 6.2 5.2
500 11.4 5.3
1000 26.2 11.7

5 250 12.8 7.4
500 16.5 12.1
1000 49.7 25.1

Student-t 2 250 5.1 7.5
500 6.2 5.4
1000 6.4 3.5

5 250 7.3 5.3
500 9.8 6.4
1000 10.7 10.3

Clayton 2 250 7.3 7.3
500 9.9 5.6
1000 21.5 8.4

5 250 32.1 19.6
500 41.3 35.4
1000 77.8 60.4

Gumbel 2 250 5.9 3.1
500 5.3 7.9
1000 14.4 5.4

5 250 44.8 31.6
500 44.0 33.3
1000 75.3 51.0

Note: Raw and GARCH(1,1) filtered log-returns. Weight combination ΓV (X) = |X − 0.5| and
ΓH(X) = 1.
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only marginally reduced the rejection of the Gaussian copula. This is in accordance with
the findings of Dobrić and Schmid (2005) and Chen et al. (2004) and indicates that the
Student-t copula, in general provides a superior fit to daily log-returns for equity prices.

Further work involve comparison of the cpit2-approach with other approaches, e.g.
Panchenko (2005), Genest and Rémillard (2008) and Genest et al. (2006a). Further tests of
various weight combinations and their relative performance with respect to various degrees
of dependence, dimensions, sample sizes and null- and alternative hypotheses, is also of
interest. Finally work needs to be done to better understand how the weight combinations
relate to the original data set Z, not only the cpit data set V.

Acknowledgements: The authors acknowledge the support and guidance of colleagues
at the Norwegian Computing Center, in particular Assistant Research Director Kjersti Aas
and Chief Research Scientist Xeni Kristine Dimakos. We would especially like to express
our gratitude to Kjersti Aas for introducing us to the field of copulae and copula gof testing
and for her continuous interest and drive. Also, thank is due to an anonymous referee and
participants at conferences and workshops, in particular Professor Christian Genest and
Professor Dr. Friedrich Schmid, for valuable comments.

(III.21)





IV
Copula goodness-of-fit testing: An overview

and power comparison

Daniel Berg
University of Oslo & Norwegian Computing Center

Abstract
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IV.1 Introduction

A copula contains all the information about the dependency structure of a random vec-
tor. Due to the representation theorem of Sklar (1959), every distribution function H can
be written as H(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}, where F1, . . . , Fd are the marginal
distributions and C : [0, 1]d → [0, 1] is the copula. This enables the modelling of marginal
distributions and the dependence structure in separate steps. This feature in particular has
motivated successful applications in areas such as survival analysis, hydrology, actuarial
science and finance. For exhaustive and general introductions to copulae, the reader is
referred to Joe (1997) and Nelsen (1999), and for introductions oriented to financial appli-
cations, Malevergne and Sornette (2006) and Cherubini et al. (2004). While the evaluation
of univariate distributions is well documented, the study of goodness-of-fit (GoF) tests for
copulas emerged only recently as a challenging inferential problem.

Let C be the underlying d-variate copula of a population. Suppose one wants to test
the composite GoF hypothesis

H0 : C ∈ C = {Cθ; θ ∈ Θ} vs. H1 : C /∈ C = {Cθ; θ ∈ Θ}, (IV.1)

where Θ is the parameter space. Lately, several contributions have been made to test
this hypothesis, e.g. Genest and Rivest (1993), Shih (1998), Breymann et al. (2003),
Malevergne and Sornette (2003), Scaillet (2006), Genest and Rémillard (2008), Fermanian
(2005), Panchenko (2005), Genest et al. (2006a), Berg and Bakken (2007), Dobrić and
Schmid (2007), Quessy et al. (2007), Genest et al. (2008), among others. However, the
field is still in its infancy and general guidelines and recommendations are sparse.

For univariate distributions, the GoF assessment can be performed using e.g. the well-
known Anderson-Darling statistic (Anderson and Darling, 1954), or less quantitatively
using a QQ-plot. In the multivariate domain there are fewer alternatives. A simple way to
build GoF approaches for multivariate random variables is to consider multi-dimensional
chi-square approaches, as in for example Dobrić and Schmid (2005). The problem with
this approach, as with all binned approaches based on gridding the probability space, is
that they will not be feasible for high dimensional problems due to the curse of dimen-
sionality. Another issue with binned approaches is that the grouping of the data is not
trivial. Grouping too coarsely destroys valuable information and the ability to contrast
distributions becomes very limited. On the other hand, too small groups leads to a highly
irregular empirical cumulative distribution function (cdf) due to the limited amount of
data. For these reasons, multivariate binned approaches are not considered in this study.
Multivariate kernel density estimation (KDE) approaches such as the ones proposed by
Fermanian (2005) and Scaillet (2006) are also excluded from this study as they are simply
too computationally exhaustive for high dimensional problems. The author believes GoF
to be most useful for high-dimensional problems since copulae are then harder to concep-
tualize. Moreover, the consequences of poor model choice is often much greater in higher
dimensional problems, e.g. risk assessments for high dimensional financial portfolios.

The class of dimension reduction approaches is a more promising alternative. Dimen-
sion reduction approaches reduce the multivariate problem to a univariate problem, and
then apply some univariate test, leading to numerically efficient approaches even for high
dimensional problems. These approaches primarily differ in the way the dimension re-
duction is carried out. For the univariate test it is common to apply standard univariate
statistics such as Kolmogorov- or Cramér-von Mises type statistics. Examples include
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Breymann et al. (2003), Malevergne and Sornette (2003), Genest et al. (2006a), Berg and
Bakken (2007), Quessy et al. (2007) and Genest and Rémillard (2008) among others.

This paper is organized as follows. In Section IV.2 some preliminaries are presented.
Section IV.3 gives an overview of the nine GoF approaches considered, including three new
ones. In Section IV.4 results from an extensive Monte Carlo study are presented, where
we examine the effect of dimension, sample size and strength of dependence on the nom-
inal level and power of the approaches. Several null- and alternative hypothesis copulae
are considered. Further, this section also presents results from a novel numerical study
of the effect of permutation order for approaches based on Rosenblatt’s transform. New
versions of some of the approaches based on this transform are proposed and examined.
These new versions utilize all permutation orders of the data in an attempt to extract
more information, and hence increase the power. Finally, Section IV.5 discusses and rec-
ommends. In addition, detailed testing procedures, leading to proper p-value estimates for
all approaches, are given in the appendix.

IV.2 Preliminaries

For copula GoF testing one is interested in the fit of the copula alone. Typically, one
does not wish to introduce any distributional assumptions for the margins. Instead the
testing is carried out using rank data. Suppose we have a random d-variate vector X. The
inference is then based on the so-called pseudo-vector Z:

Zj = (Zj1, . . . , Zjd) =

(
Rj1

n + 1
, . . . ,

Rjd

n + 1

)
, (IV.2)

where Rji is the rank of Xji amongst (X1i, . . . ,Xni). This transformation of each margin
through their normalized ranks is often denoted the empirical marginal transformation.
Given the independent samples (x1, . . . ,xn), the pseudo-observations (z1, . . . , zn) can be
considered to be samples from the underlying copula C. However, due to the rank transfor-
mation, (z1, . . . , zn) are no longer independent samples. In addition, since we are testing a
hypothesized parametric copula model, as summarized by (IV.1), parameter estimation er-
ror will influence the limiting distribution of any GoF approach. The practical consequence
is the need for parametric bootstrap procedures to obtain reliable p-value estimates. This
is treated in more detail in Secion IV.3.10.

IV.2.1 Rosenblatt’s transformation

The Rosenblatt transformation, proposed by Rosenblatt (1952), transforms a set of depen-
dent variables into a set of independent U [0, 1] variables, given the multivariate distribu-
tion. The transformation is a universally applicable way of creating a set of i.i.d. U [0, 1]
variables from any set of dependent variables with known distribution. Given a test for
multivariate, independent uniformity, the transformation can be used to test the fit of any
assumed model.

Definition IV.1 (Rosenblatt’s transformation)
Let Z = (Z1, . . . , Zd) denote a random vector with marginal distributions Fi(zi) = P (Zi ≤
zi) and conditional distributions Fi|1...i−1(Zi ≤ zi|Z1 = z1, . . . , Zi−1 = zi−1) for i =
1, . . . , d. Rosenblatt’s transformation of Z is defined as R(Z) = (R1(Z1), . . . ,Rd(Zd))

(IV.3)
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where

R1(Z1) = P (Z1 ≤ z1) = F1(z1),

R2(Z2) = P (Z2 ≤ z2|X1 = z1) = F2|1(z2|z1),

...

Rd(Zd) = P (Zd ≤ xd|Z1 = z1, . . . , Zd−1 = zd−1) = Fd|1...d−1(zd|z1, . . . , zd−1).

The random vector V = (V1, . . . , Vd), where Vi = Ri(Zi), is now i.i.d. U [0, 1]d.

A recent application of this transformation is multivariate GoF tests. The Rosen-
blatt transformation is applied to a data set, assuming a multivariate null hypothesis
distribution, and then a test of multivariate independence is carried out on the resulting
transformed data set. The null hypothesis is typically a parametric copula family. The
parameters of this copula family needs to be estimated before performing the transforma-
tion.

One advantage with Rosenblatt’s transformation in a GoF setting is that the null-
and alternative hypotheses are the same, regardless of the distribution before the trans-
formation. Hong and Li (2002) report Monte Carlo evidence of multivariate tests using
transformed variables outperforming tests using the original random variables. Chen et al.
(2004) believe that a similar conclusion also applies to GoF tests for copulae. Another
advantage is that computationally intensive double bootstrap procedures can be avoided
for some approaches.

A disadvantage with tests based on Rosenblatt’s transformation is the lack of invariance
with respect to the permutation of the variables since there are d! possible permutations.
However, as long as the permutation is decided randomly, the results will not be influenced
in any particular direction. The practical implications of this disadvantage is studied in
Section IV.4.2.

IV.2.2 Parameter estimation

Testing the hypothesis in (IV.1) involves the estimation of the copula parameters θ by some
consistent estimator θ̂. There are mainly two ways of estimating these parameters; the fully
parametric method or a semi-parametric method. The fully parametric method, termed
the inference functions for margins (IFM) method (Joe, 1997), relies on the assumption of
parametric, univariate margins. First, the parameters of the margins are estimated and
then each parametric margin is plugged into the copula likelihood which is then maximized
with respect to the copula parameters. Since we treat the margins as nuisance parameters
we choose to proceed with the pseudo-vector Z and the semi-parametric method. This
method is denoted the pseudo-likelihood (Demarta and McNeil, 2005) or the canonical
maximum likelihood (CML) (Romano, 2002) method, and is described in Genest et al.
(1995) and in Shih and Louis (1995) in the presence of censorship. Having obtained the
pseudo-vector Z as described in (IV.2), the copula parameters can be estimated using
either maximum likelihood (ML) or using the well-known relation to Kendall’s tau.

For the elliptical copulae in higher dimensions the pairwise sample Kendall’s tau’s are
inverted. This gives the correlation- and scale matrix for the Gaussian and Student copulae,
respectively. For the Student copula one must also estimate the degree-of-freedom. We
follow Mashal and Zeevi (2002) and Demarta and McNeil (2005), who propose a two-stage
approach in which the scale matrix is first estimated by inversion of Kendall’s tau, and
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then the pseudo-likelihood function is maximized with respect to the degree-of-freedom
ν, using the estimate of the scale matrix. For the Archimedean copulae the parameter is
estimated by inversion of Kendall’s tau. For dimension d > 2 we estimate the parameter
as the average of the d(d − 1)/2 pairs of Kendall’s tau’s.

IV.3 Copula goodness-of-fit approaches

The following nine copula GoF approaches are examined:

A1: Based on Rosenblatt’s transformation, proposed by Berg and Bakken (2007). This
approach includes, as special cases, the approaches proposed by Malevergne and
Sornette (2003), Breymann et al. (2003), and the second approach in Chen et al.
(2004).

A2: Based on the the empirical copula and the copula distribution function, proposed by
Genest and Rémillard (2008).

A3: Based on approach A2 and the Rosenblatt transformation, proposed by Genest et al.
(2008).

A4: Based on the empirical copula and the cdf of the copula function, proposed by Savu
and Trede (2004) and Genest et al. (2006a).

A5: Based on Spearman’s dependence function, proposed by Quessy et al. (2007).

A6: A new approache that extends Shih’s test (Shih, 1998) for the bivariate Clayton
model to arbitrary dimension.

A7: Based on the inner product between two vectors as a measure of their distance,
proposed by Panchenko (2005).

A8: A new approach based on approach A7 and the Rosenblatt transformation.

A9: A new approach based on averages of the approaches above.

Approaches A1-A5 are all dimension reduction approaches, while A6 is a moment-based
approach and A7-A8 are full multivariate approaches. For all the dimension reduction
approaches only the Cramér-von Mises statistic is considered for the unviariate test.

IV.3.1 Approach A1

Berg and Bakken (2007) propose a generalization of the approches proposed by Breymann
et al. (2003) and Malevergne and Sornette (2003). The approach is based on Rosenblatt’s
transformation applied to the pseudo-vector Z from (IV.2), assuming a null hypothesis
copula C

θ̂
. The d-variate vector V, resulting from the transformation, is i.i.d. U [0, 1]d

under the null hypothesis.1 Berg and Bakken (2007) also propose a second Rosenblatt
transformation, applied to V but this term will not be considered here.

1Since we are working with rank data this is only close to, but not exactly true. This issue is discussed
in Section IV.3.10. Until then it is assumed that this holds.
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The dimension reduction of approach A1 is based on V:

W1 =

d∑
i=1

Γ{Vi;α}, (IV.3)

where Γ is any weight function used to weight the information in V and α is the set of
weight parameters. Any weight function may be used, depending on the use and the region
of V one wishes to emphasize. Consider for example the special case Γ{Vi;α} = Φ−1(Vi)

2

which corresponds to the approach proposed by Breymann et al. (2003). If the null hypoth-
esis is the Gaussian copula this is also equivalent with the approach proposed by Malevergne
and Sornette (2003). Both of the latter studies apply the Anderson-Darling (Anderson and
Darling, 1954) statistic. Berg and Bakken (2007) show that the Anderson-Darling statistic
with Γ{Vi;α} = |Vi − 0.5| performs particularly well for testing the Gaussian null hypoth-
esis. Hence, when performing the numerical studies in Section IV.4.1 the following two
special cases of approach A1 are considered:

A(i)
1 : Γ{Vi;α} = Φ−1(Vi)

2 and A(ii)
1 : Γ{Vi;α} = |Vi − 0.5|.

For approach A(i)
1 it is easy to see that the distribution of W1 is a χ2

d distribution1.

However, for approach A(ii)
1 , and in general, the distribution of W1 is not known and

one must turn to a double bootstrap procedure to approximate the cdf F1 under the null
hypothesis. The test observator S1 of approach A1 is defined as the cdf of F1(W1):

S1(w) = P{F1(W1) ≤ w}, w ∈ [0, 1].

Under the null hypothesis, all Vi are i.i.d. U [0, 1], hence S1(w) = w. Suppose we have the
random samples (v1, . . . ,vn) from V. Then the empirical version of the test observator
can be computed as

Ŝ1(w) =
1

n + 1

n∑
j=1

I{F1(W1) ≤ w}. (IV.4)

This paper only considers the Cramér-von Mises statistic. In Appendix IV.B we show that
this becomes:

T̂1 = n

∫ 1

0
{Ŝ1(w) − S1(w)}2 dS1(w)

=
n

3
+

n

n + 1

n∑
j=1

Ŝ1

(
j

n + 1

)2

− n

(n + 1)2

n∑
j=1

(2j + 1)Ŝ1

(
j

n + 1

)
.

(IV.5)

IV.3.2 Approach A2

Genest and Rémillard (2008) propose to use the copula distribution function for the di-
mension reduction. The approach is based on the empirical copula process, introduced by
Deheuvels (1979):

Ĉ(u) =
1

n + 1

n∑
j=1

I {Zj1 ≤ u1, . . . , Zjd ≤ ud} , (IV.6)

where Zj is given by (IV.2) and u = (u1, . . . , ud) ∈ [0, 1]d. The empirical copula is the
observed frequency of P (Z1 < u1, . . . , Zd < ud). Suppose we have the random samples
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(z1, . . . , zn) from Z. The idea is then to compare Ĉ(z) with an estimation C
θ̂
(z) of Cθ.

This is a very natural approach for copula GoF testing considering that most univariate
GoF tests are based on a distance between an empirical- and null hypothesis distribution
function. Genest et al. (2008) state that, given that it is entirely non-parametric, Ĉ is the
most objective benchmark for testing the copula GoF. We expect this approach to be very
powerful since there are so few transformations of the data. A Cramér-von Mises statistic
for approach A2 becomes (Genest et al., 2008):

T̂2 = n

∫
[0,1]d

{
Ĉ(z) − C

θ̂
(z)

}2
dĈ(z) =

n∑
j=1

{
Ĉ(zj) − C

θ̂
(zj)

}2
. (IV.7)

IV.3.3 Approach A3

Genest et al. (2008) propose to apply approach A2 to the vector V resulting from applying
the Rosenblatt transform to Z. Suppose we have the random samples (v1, . . . ,vn) from
V. The idea is then to compare Ĉ with the independence copula C⊥. A Cramér-von Mises
statistic for approach A3 becomes (Genest et al., 2008):

T̂3 = n

∫
[0,1]d

{
Ĉ(v) − C⊥(v)

}2
dĈ(v) =

n∑
j=1

{
Ĉ(vj) − C⊥(vj)

}2
. (IV.8)

IV.3.4 Approach A4

Savu and Trede (2004) and Genest et al. (2006a) propose to use Kendall’s dependence
function K(w) = P (C(Z) ≤ w) as a GoF approach. The test observator S4 of approach
A4 becomes

S4(w) = P{C(Z} ≤ w}, w ∈ [0, 1],

where Z is the pseudo-vector from (IV.2). Under the null hypothesis, S4(w) = S
4,θ̂

(w)

which is copula specific. Suppose we have the random samples (z1, . . . , zn) from Z. The
empirical version of test observator S4 then equals

Ŝ4(w) =
1

n + 1

n∑
j=1

I{Ĉ(zj) ≤ w}. (IV.9)

A Cramér-von Mises statistic for approach A4 is given by:

T̂4 = n

∫ 1

0
{Ŝ4(w) − S

4,θ̂
(w)}2 dŜ4(w) =

n∑
j=1

{
Ŝ4

(
j

n + 1

)
− S

4,θ̂

(
j

n + 1

)}2

. (IV.10)

IV.3.5 Approach A5

Quessy et al. (2007) propose a GoF approach for bivariate copulae based on Spearman’s
dependence function L2(w) = P (Z1Z2 ≤ w). Notice that L2(w) = P (C⊥(Z1, Z2) ≤ w). A
natural extension to arbitrary dimension d is then Ld(w) = P (C⊥(Z) ≤ w) and the test
observator S5 of approach A5 becomes

S5(w) = P{C⊥(Z) ≤ w}, w ∈ [0, 1],

(IV.7)
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where Z is the pseudo-vector from (IV.2). Under the null hypothesis, S5(w) = S
5,θ̂

(w),

which is copula specific. Suppose we have the random samples (z1, . . . , zn) from Z. The
empirical version of test observator S5 then equals

Ŝ5(w) =
1

n + 1

n∑
j=1

I{C⊥(zj) ≤ w}. (IV.11)

A Cramér-von Mises statistic for approach A5 is given by:

T̂5 = n

∫ 1

0
{Ŝ5(w) − S

5,θ̂
(w)}2 dŜ5(w) =

n∑
j=1

{
Ŝ5

(
j

n + 1

)
− S

5,θ̂

(
j

n + 1

)}2

. (IV.12)

IV.3.6 Approach A6

Shih (1998) propose a moment-based GoF test for the bivariate gamma frailty model, also
known as Clayton’s copula. Shih (1998) considered unweighted and weighted estimators
of the dependency parameter θ via Kendall’s tau and a weighted rank-based estimator,
namely

θ̂τ =
2τ̂

1 − τ̂
and θ̂W =

∑
i<j Δij/Wij∑

i<j(1 − Δij)/Wij
, (IV.13)

where τ̂ = −1 + 4
∑

i<j Δij/{n(n − 1)}, Δij = I{(Zi1 − Zj1)(Zi2 − Zj2) > 0} and Wij =∑n
k=1 I{Zk1 ≤ max(Zi1, Zj1), Zk2 ≤ max(Zi2, Zj2)}. Since θ̂τ and θ̂W are both unbiased

estimators of θ under the null hypothesis that C = Cθ for some θ ≥ 0, Shih (1998) propose
the GoF statistic

T̂Shih =
√

n{θ̂τ − θ̂W}.

Shih (1998) shows that this statistic is asymptotically normal under the null hypothesis.
Unfortunately, the variance provided by Shih (1998) was found to be wrong by Genest
et al. (2006c), where a corrected formula is provided.

One way of extending this approach to arbitrary dimension d is to compare each pair-
wise element of θ̂τ and θ̂W . The resulting vector of d(d − 1)/2 statistics will tend, asymp-
totically, to a d(d − 1)/2 dimensional normal vector with a non-trivial covariance matrix.
The normalized version of the vector, i.e. the inverted square root of the covariance matrix
multiplied with the vector of statistics, will be asymptotically standard normal and hence
the sum of squares will now be chi-squared with d(d − 1)/2 degrees of freedom. The co-
variance matrix of the vector of statistics remains to be computed and is deferred to future
research. For now we simply compute the non-normalized sum of squares and perform a
parametric bootstrap to estimate the p-value, as for all other approaches.

The test statistic for approach A6 then becomes:

T̂6 =

d−1∑
i=1

d∑
j=i+1

{
θ̂τ,ij − θ̂W,ij

}2
. (IV.14)

θ̂W , and hence approach A6, is constructed specifically for testing the Clayton copula
and will not be considered for testing any other copula model.
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IV.3.7 Approach A7

Approaches A1-A5 are all two-stage dimension reduction approaches. First the problem is
reduced to a univariate problem, second a univariate test statistic is applied. In contrast,
the approach proposed by Panchenko (2005) tests the entire data set in one step. The
approach is based on the inner product of Z and Z

θ̂
, where Z is the pseudo-vector from

(IV.2) and Z
θ̂

is the null hypothesis vector with θ̂ being a consistent estimator of the
copula parameter. The inner product can be used as a measure of the distance between
two vectors. Now define the squared distance Q between the two vectors as

Q =
〈
Z − Z

θ̂
|κd| Z − Z

θ̂

〉
.

Here κd is a positive definite symmetric kernel such as the Gaussian kernel:

κd(Z,Z′) = exp
{
−‖Z − Z

′‖2/(2dh2)
}

,

with ‖ · ‖ denoting the Euclidean norm in Rd and h > 0 being a bandwidth. Q will be zero
if and only if Z = Z

θ̂
. Suppose we have the random samples (z1, . . . , zn) from Z. Now

generate the random samples (z∗1, . . . , z
∗
n) from the null hypothesis vector Z

θ̂
. Following

the properties of an inner product, Q can be decomposed as Q = Q11 − 2Q12 + Q22. Each
term of this decomposition is estimated using V-statistics (see Denker and Keller (1983)
for an introduction to U- and V-statistics) and the test statistic for approach A7 is given
by:

T̂7 =
1

n2

n∑
i=1

n∑
j=1

κd(zi, zj) −
2

n2

n∑
i=1

n∑
j=1

κd(zi, z
∗
j ) +

1

n2

n∑
i=1

n∑
j=1

κd(z
∗
i , z

∗
j ). (IV.15)

IV.3.8 Approach A8

Along the lines of approach A3 we propose a version of approach A7 based on V, the vector
resulting from the Rosenblatt transformation applied to Z. Suppose we have the random
samples (v1, . . . ,vn) from V. Now generate the random samples (v∗

1, . . . ,v
∗
n) from the

independence copula. The statistic for approach A8 is simply

T̂8 =
1

n2

n∑
i=1

n∑
j=1

κd(vi,vj) −
2

n2

n∑
i=1

n∑
j=1

κd(vi,v
∗
j ) +

1

n2

n∑
i=1

n∑
j=1

κd(v
∗
i ,v

∗
j ). (IV.16)

IV.3.9 Approach A9

Finally, we propose to use averages of the approaches already introduced, as new ap-
proaches. Such averages will capture several aspects of the data and its potential deviation
from the null hypothesis. Surely one can find optimal weights for a weighted average and
the average should be taken over standardized variables, i.e. all approaches should be
scaled appropriately. However, due to the computational load, this approach is included
here in its most simple form as an interesting supplement and a hint of further research.
Two averages are considered, first the average of all approaches and second the average of
the three approaches based on the empirical copula, i.e. A2, A3 and A4. The corresponding
statistics are defined as

T̂
(i)
9 =

1

9

⎧⎨⎩T̂
(i)
1 + T̂

(ii)
1 +

8∑
j=2

T̂j

⎫⎬⎭ and T̂
(ii)
9 =

1

3

{
T̂2 + T̂3 + T̂4

}
. (IV.17)

(IV.9)



74 Paper IV. Copula goodness-of-fit testing

IV.3.10 Testing procedures

In Section IV.3.1 it was assumed that V, resulting from applying Rosenblatt’s transfor-
mation to Z, is i.i.d. U [0, 1]d. The non-parametric margins introduce dependence in V.
Hence, it is only close to, but not exactly independent. This applies to all approaches
considered here. In addition, we have small sample estimation error from the estimation
of the null hypothesis copula parameter. To cope with these issues and obtain a proper
estimate of the p-value of a statistic, one turns to parametric bootstrap procedures. The
parametric bootstrap procedure used in Genest et al. (2006a) is adopted, the validity of
which is established in Genest and Rémillard (2008). Dobrić and Schmid (2007) and Berg
and Bakken (2007) propose a very similar procedure in their modification of the original
procedure used in Breymann et al. (2003). The asymptotic validity of the bootstrap pro-
cedure has only been proved for the approaches A2 and A4. However, the results in Dobrić
and Schmid (2007) and Berg and Bakken (2007) strongly indicates that the procedure
is valid also for approach A1. This is further discussed in view of the results in Section
IV.4.1 and in Section IV.5. The test procedure for approach A7, originally proposed in
Panchenko (2005), gave us too low nominal levels (i.e. the rejection rate when the null
hypothesis is true was lower than the prescribed size). However, a small fix, in line with the
procedure of Genest and Rémillard (2008), solved this issue. Details of the test procedures
for all approaches are given in Appendix IV.C. In many cases one must resort to a double
parametric bootstrap to compute a statistic. This means that there are two bootstrap
parameters that needs to be chosen, the sample size Nb for the double bootstrap step and
the number of replications K for the estimation of p-values. In this paper the number of
replications K is chosen to equal 1000, while the double bootstrap sample size Nb is chosen
to equal 10000 for approach A1, and 2500 in dimension d = {2, 4} and 5000 in dimension
d = 8 for approaches A2, A4 and A5. See Appendix IV.C for details.

IV.4 Numerical experiments

IV.4.1 Size and power simulations

A large Monte Carlo study is performed to assess the properties of the approaches for var-
ious dimensions, sample sizes, levels of dependence and alternative dependence structures.
The nominal levels and the power against fixed alternatives are of particular interest. The
simulations are carried out according to the following factors:

• H0 copula (5 choices: Gaussian, Student, Clayton, Gumbel, Frank),

• H1 copula (5 choices: Gaussian, Student (ν = 6), Clayton, Gumbel, Frank),

• Kendall’s tau (2 choices: τ = {0.2, 0.4}),

• Dimension (3 choices: d = {2, 4, 8}),

• Sample size (2 choices: n = {100, 500}).

Due to extreme computational load, the Student copula is only considered as null hypoth-
esis in the bivariate case. In each of the remaining 260 cases, a sample of dimension d
and size n is drawn from the H1 copula with dependence parameter corresponding to τ .
The statistics of the various GoF approaches are then computed under the null hypothesis

(IV.10)
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H0 and p-values are estimated. This entire procedure is repeated 10, 000 times in order to
estimate the nominal level and power for each approach under consideration.

Since we apply a parametric bootstrap procedure in the estimation of p-values, critical
values are obtained by simulating from the null hypothesis, and hence all reported powers
are so-called size-adjusted powers and approaches can be compared appropriately (see e.g.
Hendry (2006) and Florax et al. (2006) for size-adjustment suggestions).

The critical values of each statistic under the true null hypothesis were tabulated for
each dimension and sample size considered and for many levels of dependence. For the
power simulations we used table look-up with linear interpolation to ensure comparison
with the appropriate critical value. Despite the tabulation this computationally exhaustive
experiment would not have been feasible without access to the Titan computer grid at the
University of Oslo, a cluster of 1, 750 computing cores, 6.5 TB memory, 350 TB local disk
and 12.5 Tflops.

Testing the Gaussian hypothesis

Let us first consider testing the Gaussian hypothesis under several fixed alternatives. Table
IV.1 shows the results from our simulations.

Notice that the nominal levels of all approaches match the prescribed size of 5% well.
Next, note that the power generally (but not always) increases with level of dependence,
as expected since two copulae differs more and more as we move away from independence
where all copulae are equivalent to the independence copula. Also note that the power
increases with sample size, as it should for the approaches to be consistent. The power
generally (but not always) also increases with dimension. This is as expected since it is
natural to believe that the difference between two distributions increases with dimension,
see for example Chen et al. (2004) who show that the Kullbach-Leibler Information Cri-
terion (a measure of distance between two copulae) between the Gaussian- and Student
copulae increases with dimension. Also, one can imagine that there is more for a GoF
approach to work with the higher dimension is.

Next, we note that no approach is always the best. There are special cases where they
perform well and cases where they perform poorly. For example, approaches A1 and A3

perform particularly well for testing against heavy tails, i.e. the Student copula alternative.

A(i)
1 performs extremely well for high dimensions and large sample sizes while A3 performs

very well for the bivariate case and for small sample sizes in higher dimensions. When
Clayton and Gumbel are the alternatives, two of the approaches based on the empirical
copula, A2 and A4, perform very well. In addition, in particular for Gumbel alternatives
in higher dimensions, approach A5 performs very well. And finally, as expected, approach

A(ii)
9 , the average of A2, A3 and A4 perform very well for Clayton and Gumbel alternatives.

For the Frank alternative, approach A3 performs particularly well for the bivariate case,
but then, surprisingly, extremely poorly for higher dimensions while approaches A4 and A5

perform quite well for all dimensions. This shows us the danger of concluding for higher
dimensions based on bivariate power results. We also note that approaches A7 and A8 are
generally quite poor, they almost never perform among the best. However, at the same
time they are usually not among the worst. Finally, we see that the average approaches
perform quite well in most cases, sometimes being the most powerful ones.

One aspect of the power comparison that is lost when only looking at the best approach
(bold in the tables), or when ranking the approaches, is that an approach can be almost
as good as the best approach in all cases, but not necessarily the very best. For example

(IV.11)
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Figure IV.1: Distribution of power difference from the very best approach for
testing the Gaussian copula.

when the alternative is the Gumbel copula for d = 4, n = 500 and τ = 0.40, approach A(ii)
9

will be ranked 1 with a power of 99.8 while approach A5 will be ranked number 5 when
its power is 98.1. This small difference in power may not even be statistically significant
and purely due to Monte Carlo variation. Hence, in addition to the table we also examine
a boxplot of the differences in power, from the best performing approach. This is depicted
in Figure IV.1. From this figure we see that although approaches A2 and A4 are the best
performing approaches in addition to the average approaches, the power in some very few
cases is remarkably low compared to the best in those specific cases. All cases of poor
performance of these approaches are for the Student alternative. Hence, for testing the
Gaussian copula one should apply more than one approach, e.g A2 and A3 and in higher

dimensions with large sample sizes also approach A(i)
1 . The average approaches represent

an attempt of applying several approaches simultaneously and we see that they have very
stable and good performance. However, also for these approaches there are cases, although
very few, of very poor performance compared to the very best approach.

For approach A1, Berg and Bakken (2007) report results where the weight function
Γ{Vi;α} = |Vi − 0.5| outperformed Γ{Vi;α} = Φ−1(Vi)

2, in particular for small sample
sizes. These results are not confirmed in this paper where the conclusion is the opposite in
almost all cases. However, in this paper the Cramér–von Mises statistic was applied while
Berg and Bakken (2007) considered the Anderson–Darling statistic. Since the Anderson–
Darling statistic emphasizes the tails of the distribution, when mixed with the extreme
weight on the corners and edges of the unit hypercube from Φ−1(Vi) it may be too extreme
for small sample sizes. When using the Cramér–von Mises statistic this is apparently not
the case.
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Table IV.1: Percentage of rejections (at 5% significance level) of the Gaussian
copula by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 5.3 5.0 5.0 4.6 5.4 5.7 – 4.7 5.2 5.0 5.1

Student-t 0.9 4.2 7.0 8.8 6.1 5.3 – 5.6 6.0 3.3 6.4
Clayton 2.6 5.0 19.7 19.6 19.9 15.6 – 7.1 6.9 10.6 24.0

Gumbel 1.9 4.6 10.7 3.6 11.6 8.4 – 6.2 5.9 4.9 9.7
Frank 3.4 3.2 6.0 7.4 6.0 6.2 – 5.4 5.5 3.4 6.1

0.4 Gaussian 5.2 5.0 4.7 5.4 4.8 4.7 – 5.0 4.7 5.0 4.9

Student-t 1.3 2.4 5.9 11.6 4.8 3.9 – 5.3 5.8 2.3 6.4
Clayton 1.1 2.5 57.4 59.6 49.7 33.7 – 14.9 15.8 22.2 63.9

Gumbel 1.3 2.6 19.1 5.0 18.5 8.2 – 7.0 7.9 4.1 16.2
Frank 0.8 1.2 10.6 11.6 10.1 8.9 – 6.1 6.3 1.5 11.8

500 0.2 Gaussian 4.7 4.9 5.2 4.8 5.2 5.1 – 5.1 4.9 4.9 5.0

Student-t 19.5 16.9 10.0 16.9 8.4 8.5 – 10.3 9.8 21.4 10.0
Clayton 2.0 5.8 72.5 71.3 71.9 57.2 – 23.8 20.3 56.5 79.5

Gumbel 2.5 6.9 33.2 8.5 33.9 25.8 – 12.3 11.1 21.2 34.3

Frank 2.2 2.9 11.4 21.9 11.1 9.9 – 7.6 8.1 5.8 14.5
0.4 Gaussian 5.0 5.0 4.6 5.4 4.9 4.8 – 4.9 5.5 5.1 4.8

Student-t 23.8 12.5 8.2 30.5 6.6 6.9 – 10.1 12.6 20.6 12.0
Clayton 6.8 4.3 99.8 100 99.6 96.2 – 78.1 84.3 99.0 99.9
Gumbel 8.8 6.0 65.3 18.9 62.9 39.8 – 26.4 32.4 42.3 65.3

Frank 15.1 12.2 36.9 60.7 33.4 26.4 – 17.0 20.6 36.9 52.1
4 100 0.2 Gaussian 4.8 5.0 4.6 4.8 4.8 5.3 – 5.6 5.0 5.0 4.9

Student-t 5.1 6.5 8.9 15.4 8.5 7.0 – 6.7 6.6 7.5 9.7
Clayton 1.1 5.0 45.6 30.5 52.5 19.2 – 9.4 7.0 20.2 55.9

Gumbel 1.2 3.1 12.8 0.7 42.5 56.4 – 13.9 8.8 13.2 34.9
Frank 2.0 1.4 1.8 3.0 12.2 19.6 – 7.5 6.8 2.0 8.4

0.4 Gaussian 4.5 4.8 5.2 5.4 5.1 5.1 – 4.9 5.3 4.9 5.3

Student-t 9.2 3.7 8.6 24.4 6.1 5.3 – 6.9 7.1 7.5 8.1
Clayton 1.1 1.8 90.8 80.4 84.0 45.6 – 27.9 18.3 48.8 90.1
Gumbel 1.5 1.7 41.0 3.6 52.0 48.7 – 25.8 15.4 17.1 50.1
Frank 1.6 2.2 10.1 7.3 23.6 20.6 – 12.6 8.3 5.6 21.2

500 0.2 Gaussian 5.8 5.3 5.3 5.0 4.8 4.9 – 5.0 5.5 4.9 4.7

Student-t 98.5 71.8 16.5 47.1 11.2 12.6 – 13.6 15.0 96.5 15.7
Clayton 4.3 7.7 99.0 94.4 98.0 88.4 – 39.3 22.2 94.6 99.2

Gumbel 8.0 5.9 84.2 48.0 97.7 98.5 – 70.3 34.7 92.3 98.0
Frank 3.6 6.6 25.4 5.0 64.3 66.2 – 20.3 17.2 39.1 63.8

0.4 Gaussian 4.7 4.7 4.8 4.9 4.7 4.8 – 5.1 5.0 4.4 4.6

Student-t 98.1 67.5 11.6 72.1 8.0 8.8 – 16.4 18.7 94.0 13.8
Clayton 44.3 13.2 100 100 100 99.9 – 97.2 91.2 100 100

Gumbel 63.2 34.7 98.9 70.1 99.6 98.1 – 95.5 77.4 99.4 99.8

Frank 79.3 74.2 73.2 19.5 88.6 74.5 – 61.2 40.7 97.4 90.6
8 100 0.2 Gaussian 5.0 5.2 5.9 4.7 5.8 5.2 – 5.3 5.2 5.4 5.7

Student-t 40.4 16.4 9.8 15.0 12.3 7.7 – 7.9 6.9 35.9 12.4
Clayton 0.7 4.1 48.7 24.3 66.0 1.2 – 11.8 6.6 19.5 65.5
Gumbel 0.6 1.7 22.0 2.3 61.5 98.3 – 56.9 13.8 14.0 56.1
Frank 0.4 0.6 3.8 1.3 7.3 56.0 – 14.4 7.2 0.6 4.7

0.4 Gaussian 5.1 5.2 5.0 4.6 5.3 5.7 – 5.5 5.1 5.3 5.1

Student-t 51.7 16.1 8.3 17.6 7.4 6.1 – 8.0 8.5 39.2 7.8
Clayton 1.6 2.4 96.6 49.2 93.3 28.1 – 40.4 19.9 59.9 95.0
Gumbel 16.2 10.1 70.5 2.7 78.4 92.8 – 67.9 28.1 52.7 78.6
Frank 4.8 8.3 19.6 2.9 28.7 23.9 – 26.7 7.5 14.6 25.7

500 0.2 Gaussian 5.5 4.8 4.4 5.1 4.8 5.4 – 5.2 5.1 4.6 4.8

Student-t 100 99.9 23.7 56.4 19.1 11.8 – 21.7 20.9 100 21.3
Clayton 11.8 12.9 100 74.3 99.7 84.8 – 50.5 13.6 97.2 99.9
Gumbel 30.0 13.4 100 71.7 100 100 – 100 63.0 99.9 100

Frank 22.9 38.3 99.8 10.5 98.4 99.9 – 69.6 19.4 90.7 99.8
0.4 Gaussian 4.9 5.4 4.9 5.2 5.4 5.1 – 4.7 5.9 5.1 5.2

Student-t 100 99.8 16.9 71.5 12.2 10.6 – 21.4 32.0 100 13.7
Clayton 78.0 52.6 100 99.8 100 100 – 99.2 81.5 100 100

Gumbel 100 98.7 100 33.9 100 100 – 100 94.7 100 100

Frank 99.5 99.5 100 1.9 99.8 95.6 – 97.3 37.7 100 100

Note: The Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are
nominal levels and should correspond to the prescribed size of 5%. Numbers in bold indicates the
best performing approach. All powers are size-adjusted.
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Table IV.2: Percentage of rejections (at 5% significance level) of the bivariate
Student copula by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 5.7 5.4 4.9 4.0 5.0 5.2 – 5.6 5.3 5.6 4.8
Student-t 4.4 4.6 4.8 4.1 5.1 4.8 – 5.1 5.0 4.6 4.8

Clayton 4.8 5.3 19.2 11.0 20.1 17.2 – 7.3 6.8 15.4 21.3

Gumbel 4.7 5.1 9.2 4.9 10.5 7.0 – 5.9 5.8 7.6 10.1
Frank 4.9 5.4 6.0 4.4 6.6 7.1 – 5.8 5.7 6.5 6.6

0.4 Gaussian 4.7 5.4 4.9 4.0 5.2 5.4 – 5.7 4.9 5.2 4.8
Student-t 4.1 4.5 4.2 4.4 4.8 5.1 – 4.9 4.9 4.4 4.4

Clayton 4.2 4.9 55.0 31.7 53.3 41.1 – 15.4 14.8 39.9 57.3

Gumbel 4.4 5.0 17.2 6.1 18.7 9.1 – 7.2 7.4 10.5 17.5
Frank 2.9 3.4 11.8 5.3 12.5 10.5 – 7.5 6.3 6.9 11.6

500 0.2 Gaussian 5.8 5.8 5.1 5.1 5.0 5.6 – 5.8 5.5 6.0 5.3
Student-t 5.1 5.1 4.5 4.5 4.5 5.3 – 5.1 5.2 4.8 4.6

Clayton 5.6 4.8 69.9 60.4 72.4 61.3 – 22.0 19.9 65.7 77.5

Gumbel 5.2 5.3 28.6 18.6 30.0 19.7 – 11.0 10.0 23.5 33.2

Frank 5.2 6.3 12.3 8.3 12.7 12.6 – 7.4 7.8 11.6 13.4

0.4 Gaussian 5.6 5.2 4.5 5.3 5.0 5.5 – 5.2 4.9 5.4 5.0
Student-t 4.9 4.6 5.3 4.4 4.5 4.8 – 4.7 5.0 4.7 4.6

Clayton 6.4 7.0 99.8 99.6 99.6 97.7 – 74.6 78.4 99.5 99.9

Gumbel 4.5 5.1 61.7 40.0 61.2 34.1 – 22.4 24.1 49.2 68.3

Frank 11.6 5.9 41.2 15.4 40.4 31.7 – 17.2 14.2 36.0 44.8

Note: Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are
nominal levels and should correspond to the prescribed size of 5%. Numbers in bold indicates the
best performing approach. All powers are size-adjusted.

Testing the Student hypothesis

Next, we consider testing the Student copula hypothesis, for the bivariate case only. Table
IV.2 and Figure IV.2 show the results. Again we note that the nominal levels match the
prescribed size well. The powers against the Gaussian copula are also very close to the
nominal levels which makes sense since the Student copula approaches the Gaussian as the
degrees of freedom increases. As for testing the Gaussian hypothesis, approaches A2, A4,

and in particular A(ii)
9 , perform very well. Approaches A1, A7 and A8 all perform rather

poorly. While approach A1 performed very well for Student alternatives when testing the
Gaussian copula, this is of course not the case when testing the Student copula since this
is now the null hypothesis and nominal levels should, and do indeed, match the prescribed
size of 5%.

Testing the Clayton hypothesis

Table IV.3 shows the results of testing the Clayton hypothesis and Figure IV.3 shows
the power differences. The nominal levels match the prescribed size well. Again notice
the very good performance of approaches A2 and A4. A6 does however outperform all

other approaches. A(i)
9 also perform very well, but is highly dominated by A6 and does

not provide additional knowledge in this case. Approach A6, the multivariate version of
Shih’s statistic, is constructed specifically for testing the Clayton copula. With this in
mind, the performance of approaches A2 and A4 is quite impressive. While approach A3

performed very well for testing the Gaussian copula it performs very poorly for testing the
Clayton copula, with terrible performance in some cases. Finally, note that the powers are
in general higher than that for testing the Gaussian hypothesis, i.e. it is simpler to detect
deviations from the Clayton copula than from the Gaussian copula.
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Figure IV.2: Distribution of power difference from the very best approach for
testing the bivariate Student copula.
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Figure IV.3: Distribution of power difference from the very best approach for
testing the Clayton copula.
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Table IV.3: Percentage of rejections (at 5% significance level) of the Clayton copula
by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 7.5 7.3 21.3 6.6 23.2 14.5 20.9 7.3 6.9 20.8 22.4
Student-t 8.0 8.5 23.8 8.4 24.1 16.3 15.9 7.5 7.0 21.0 23.7
Clayton 4.9 5.1 5.0 5.2 5.0 5.2 4.5 5.2 5.2 5.0 5.1

Gumbel 6.2 9.4 46.7 13.0 47.3 32.3 40.4 12.4 11.1 41.2 47.1
Frank 7.0 6.9 24.6 6.4 27.1 16.3 30.3 8.6 7.4 25.1 25.8

0.4 Gaussian 24.0 26.7 58.9 26.4 58.2 33.7 62.1 16.6 15.3 66.5 60.6
Student-t 13.4 19.0 60.6 16.0 58.4 35.1 53.6 15.4 13.7 58.2 57.3
Clayton 4.4 4.8 4.8 5.4 4.9 4.9 4.8 4.7 4.8 4.6 4.8

Gumbel 29.7 38.9 91.6 41.2 90.6 70.1 90.2 34.9 31.7 92.0 90.2
Frank 24.1 19.2 64.8 24.2 66.2 35.6 84.3 19.3 16.5 77.0 65.6

500 0.2 Gaussian 20.6 13.3 78.7 44.8 70.2 52.9 85.9 24.0 20.5 68.5 75.3
Student-t 26.9 23.3 82.1 33.4 73.7 64.8 68.5 26.1 22.2 76.1 77.6
Clayton 5.2 5.1 5.0 4.8 5.1 5.4 5.1 5.3 4.5 4.8 5.2

Gumbel 12.6 23.2 99.2 84.9 97.9 94.0 99.0 60.1 52.0 97.2 98.6
Frank 18.8 9.0 86.6 42.9 82.2 63.4 97.6 30.4 22.7 78.3 84.8

0.4 Gaussian 94.8 85.6 100 99.5 99.7 95.5 100 77.7 82.3 99.9 99.9
Student-t 65.3 71.4 99.9 89.7 99.6 97.3 99.8 74.7 74.9 99.8 99.8
Clayton 5.3 5.1 5.0 5.2 4.7 4.8 4.9 4.7 4.4 5.0 4.7

Gumbel 98.4 97.8 100 100 100 100 100 99.4 99.5 100 100

Frank 97.8 69.9 100 99.4 99.9 96.7 100 84.6 86.8 100 100

4 100 0.2 Gaussian 10.8 10.6 37.4 3.2 38.5 39.1 49.8 10.6 6.5 49.2 37.9
Student-t 27.1 21.3 48.4 17.8 37.7 42.2 37.7 10.1 7.3 57.2 42.5
Clayton 4.7 5.1 5.3 5.6 5.2 5.1 4.6 6.3 4.7 5.0 5.2

Gumbel 8.8 12.0 64.4 3.0 91.1 94.1 81.5 31.9 14.0 88.4 88.6
Frank 7.7 6.5 36.0 1.4 74.7 68.9 73.0 15.1 7.2 72.8 68.8

0.4 Gaussian 78.3 65.7 89.8 3.0 83.0 73.9 91.6 31.0 16.7 95.2 84.3
Student-t 53.9 45.7 92.9 6.1 82.6 76.0 86.2 29.9 15.8 92.2 85.6
Clayton 5.2 4.7 5.6 5.5 5.2 5.1 4.5 5.3 4.9 5.1 5.3

Gumbel 79.1 62.1 99.3 4.9 99.8 99.8 99.8 80.8 40.1 99.9 99.8
Frank 68.7 37.9 91.4 3.2 97.0 84.8 99.6 52.4 15.1 99.3 96.3

500 0.2 Gaussian 89.6 38.1 99.4 18.1 97.0 91.2 99.9 38.8 23.0 99.4 98.0
Student-t 93.7 76.9 99.9 89.7 95.8 94.5 97.9 44.1 30.8 100 98.7
Clayton 4.8 4.7 5.2 5.6 5.6 4.7 5.0 4.8 5.3 5.1 5.6

Gumbel 71.1 37.8 100 80.3 100 100 100 97.8 83.4 100 100

Frank 82.6 11.8 99.8 14.5 100 99.9 100 67.9 24.8 100 100

0.4 Gaussian 100 100 100 99.7 100 99.9 100 97.4 95.5 100 100

Student-t 100 99.8 100 80.0 100 100 100 96.9 90.1 100 100

Clayton 4.9 5.2 5.3 5.7 5.6 5.2 5.6 4.8 5.5 5.1 5.4

Gumbel 100 100 100 100 100 100 100 100 100 100 100

Frank 100 99.0 100 99.9 100 100 100 100 93.6 100 100

8 100 0.2 Gaussian 14.3 12.6 29.9 9.9 21.4 53.5 82.6 8.1 6.6 74.2 22.3
Student-t 57.8 61.0 44.3 40.9 20.2 54.3 65.9 9.3 8.6 85.5 24.4
Clayton 5.5 5.0 5.2 5.5 5.6 5.4 4.3 4.7 5.2 5.1 5.5

Gumbel 7.6 10.5 63.2 52.6 91.9 100 98.0 68.7 26.5 97.0 90.8
Frank 3.2 6.0 16.6 4.2 74.8 96.5 96.7 20.4 6.3 93.4 68.9

0.4 Gaussian 97.5 91.7 96.9 2.5 87.1 89.0 98.2 34.8 10.9 99.1 90.2
Student-t 86.3 80.5 98.4 29.5 86.1 89.4 96.0 32.4 10.7 97.7 91.4
Clayton 5.7 5.4 4.8 5.1 4.7 4.8 4.6 5.3 5.0 4.7 4.7

Gumbel 93.0 82.2 99.8 19.9 100 100 100 97.3 43.4 100 100

Frank 85.2 62.8 93.7 0.6 99.6 97.7 100 76.5 8.1 100 99.6
500 0.2 Gaussian 100 71.6 100 24.9 98.9 97.4 100 41.8 17.0 100 99.5

Student-t 100 100 100 99.3 96.7 98.1 100 50.8 32.0 100 99.3
Clayton 5.3 4.8 5.0 4.8 4.9 5.3 4.6 5.3 5.4 5.4 4.7

Gumbel 98.3 40.7 100 96.6 100 100 100 100 96.8 100 100

Frank 99.9 11.0 100 3.7 100 100 100 92.8 15.5 100 100

0.4 Gaussian 100 100 100 96.1 100 100 100 98.7 84.4 100 100

Student-t 100 100 100 93.2 100 100 100 98.7 78.1 100 100

Clayton 4.5 4.8 4.8 4.9 4.9 5.2 5.1 5.5 4.9 4.8 4.8

Gumbel 100 100 100 88.5 100 100 100 100 100 100 100

Frank 100 100 100 69.5 100 100 100 100 76.0 100 100

Note: The Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are
nominal levels and should correspond to the prescribed size of 5%. Numbers in bold indicates the
best performing approach. All powers are size-adjusted.

(IV.16)



IV.4. Numerical experiments 81

A1
(i)

A1
(ii)

A2 A3 A4 A5 A7 A8 A9
(i)

A9
(ii)

0
20

40
60

80
10

0
P

ow
er

 d
iff

er
en

ce
 (

%
)

Figure IV.4: Distribution of power difference from the very best approach for
testing the Gumbel copula.

Testing the Gumbel hypothesis

We now test the Gumbel hypothesis. The results are shown in Table IV.4 and the power
differences in Figure IV.4. Notice that the nominal levels match the prescribed size well.
Note also, again, the very good performance of approaches A2 and A4. Finally, approach

A(ii)
9 perform very well. This is not surprising since it is the average of A2, A3 and A4.

Testing the Frank hypothesis

Finally, we test the Frank hypothesis. The results are shown in Table IV.5 and the power
differences in Figure IV.5. The nominal levels match the prescribed size well. Note again

the very good performance of approach A2. Approaches A4 and A(ii)
9 also perform very

well.

IV.4.2 Effect of permutation order for Rosenblatt’s transform

Approaches A1, A3 and A8 are all based on Rosenblatt’s transform and a consecutive test
of independence. The lack of invariance to the order of permutation may pose a problem to
these approaches in the sense that the statistic for a given data set may prove very different
depending on the permutation order. This is an undesirable feature of a statistical testing
procedure. However, the practical consequence of this permutation invariance has not yet
been investigated.

Table IV.6 shows the effect of permutation order on the estimated p-value for the three
approaches based on Rosenblatt’s transformation. The reported values are means and stan-
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Table IV.4: Percentage of rejections (at 5% significance level) of the Gumbel copula
by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 7.7 6.6 9.9 7.3 9.6 9.6 – 6.4 6.6 10.2 9.8
Student-t 7.1 6.2 11.2 9.8 9.0 7.6 – 5.9 6.2 8.8 10.4
Clayton 5.9 6.5 45.8 31.1 44.0 35.1 – 12.3 10.8 33.1 47.5

Gumbel 5.3 5.1 5.1 4.9 5.1 5.1 – 5.1 5.3 5.1 4.9

Frank 6.7 5.2 12.1 8.0 11.3 13.3 – 7.4 6.8 10.4 11.7
0.4 Gaussian 11.4 11.2 17.5 8.9 16.4 13.7 – 8.1 7.2 19.1 17.6

Student-t 5.8 6.2 20.2 15.2 16.1 11.3 – 7.5 6.7 13.9 19.7
Clayton 8.1 14.0 92.6 75.4 89.8 75.3 – 34.7 31.4 83.4 92.6

Gumbel 4.8 4.6 4.8 5.1 4.9 4.7 – 4.7 5.2 4.8 5.0

Frank 8.1 7.1 28.7 9.4 24.8 24.3 – 10.3 9.0 20.9 25.7
500 0.2 Gaussian 19.9 9.8 37.0 23.9 29.2 26.9 – 11.7 10.2 31.4 33.1

Student-t 16.6 11.6 39.1 33.7 25.2 17.3 – 11.8 10.2 27.7 30.8
Clayton 8.4 10.3 99.6 98.5 98.5 95.9 – 57.5 51.5 97.1 99.3
Gumbel 4.7 4.6 5.1 4.8 4.6 5.1 – 5.0 4.6 4.6 4.6

Frank 16.0 7.4 53.9 30.7 38.5 42.6 – 16.2 12.7 37.1 44.3
0.4 Gaussian 49.9 32.4 74.1 38.4 61.6 46.8 – 25.4 28.9 73.8 67.7

Student-t 9.0 10.8 74.1 56.7 57.3 36.0 – 20.9 21.1 53.0 68.4
Clayton 43.6 57.8 100 100 100 100 – 99.3 99.6 100 100

Gumbel 5.4 4.9 5.2 5.5 5.0 5.0 – 4.8 5.2 5.0 4.9

Frank 45.3 13.8 95.5 47.8 85.1 82.2 – 44.4 42.1 86.2 89.2
4 100 0.2 Gaussian 6.8 13.0 54.7 43.4 51.1 24.0 – 14.9 7.5 41.6 57.3

Student-t 24.9 24.8 56.8 55.7 52.8 21.1 – 13.0 8.8 58.7 60.1

Clayton 3.4 15.1 89.6 85.4 97.1 82.2 – 29.9 10.1 90.6 97.2

Gumbel 5.0 4.9 5.0 4.5 5.0 5.3 – 5.0 5.6 4.8 5.0

Frank 4.6 5.4 22.2 13.1 29.2 30.6 – 12.6 5.5 18.6 30.0
0.4 Gaussian 29.7 36.6 66.7 44.0 59.9 33.7 – 28.8 9.2 70.5 65.0

Student-t 15.1 22.0 68.0 66.1 60.7 30.2 – 26.2 9.9 60.0 68.9

Clayton 26.8 29.9 99.9 99.1 100 98.8 – 82.4 32.8 99.8 100

Gumbel 5.0 5.0 5.0 5.2 5.1 5.1 – 5.0 5.4 5.5 5.0

Frank 17.8 9.0 51.4 12.5 54.3 56.1 – 26.2 7.3 46.5 53.7
500 0.2 Gaussian 75.9 59.1 99.4 98.5 98.3 96.0 – 68.4 19.5 99.4 99.2

Student-t 92.0 88.5 99.1 99.7 97.7 94.5 – 67.4 27.3 100 99.2
Clayton 34.2 64.9 100 100 100 100 – 98.1 53.3 100 100

Gumbel 4.7 4.8 4.8 4.6 4.7 5.0 – 4.7 4.2 4.6 4.7

Frank 47.7 10.0 86.6 47.5 92.7 98.1 – 58.0 9.8 93.2 94.0
0.4 Gaussian 99.9 98.2 100 99.7 99.6 97.6 – 95.9 54.8 100 99.9

Student-t 86.1 91.3 100 100 99.6 97.1 – 93.9 60.2 100 100

Clayton 100 95.7 100 100 100 100 – 100 99.8 100 100

Gumbel 4.7 5.1 4.9 5.3 5.1 4.8 – 4.6 5.1 4.8 5.2

Frank 99.4 31.8 99.9 58.9 99.8 100 – 93.0 23.7 100 99.9
8 100 0.2 Gaussian 1.0 30.0 89.8 73.2 87.1 29.9 – 37.6 6.7 50.0 90.4

Student-t 52.3 70.3 89.4 76.6 86.2 30.9 – 36.1 8.3 91.9 89.9
Clayton 0.2 29.9 93.6 95.4 99.8 81.2 – 53.3 8.6 89.3 99.7
Gumbel 5.4 5.1 4.1 4.8 4.9 4.8 – 4.6 5.1 5.1 4.8

Frank 0.3 4.3 14.6 10.3 40.4 19.4 – 28.4 5.5 3.6 36.8
0.4 Gaussian 36.8 68.2 98.1 72.3 90.2 50.3 – 70.1 6.8 93.7 93.7

Student-t 45.3 65.7 97.8 83.8 90.8 51.8 – 65.0 11.7 94.1 94.6
Clayton 38.5 45.9 100 99.6 100 99.9 – 98.2 42.0 100 100

Gumbel 5.2 5.1 5.3 5.1 5.3 5.4 – 5.0 5.5 5.2 5.4

Frank 16.0 8.7 54.3 9.6 67.1 63.5 – 53.4 4.9 42.5 66.2
500 0.2 Gaussian 99.9 99.1 100 100 100 100 – 99.2 14.8 100 100

Student-t 100 100 100 100 100 100 – 98.9 31.7 100 100

Clayton 79.4 98.9 100 100 100 100 – 100 33.0 100 100

Gumbel 5.1 4.9 4.1 4.8 5.1 5.2 – 4.3 4.8 5.2 5.0

Frank 78.6 18.6 90.1 36.7 99.9 100 – 93.7 7.0 99.2 99.9
0.4 Gaussian 100 100 100 100 100 100 – 100 37.5 100 100

Student-t 100 100 100 100 100 100 – 100 67.5 100 100

Clayton 100 99.9 100 100 100 100 – 100 99.7 100 100

Gumbel 5.3 4.9 5.1 5.3 5.2 5.4 – 4.9 5.0 5.2 5.1

Frank 100 48.8 100 35.6 100 100 – 99.8 9.5 100 100

Note: Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are
nominal levels and should correspond to the prescribed size of 5%. Numbers in bold indicates the
best performing approach. All powers are size-adjusted.
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Table IV.5: Percentage of rejections (at 5% significance level) of the Frank copula
by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 5.8 5.5 6.0 7.5 6.9 6.6 – 4.9 5.1 6.2 7.4
Student-t 10.6 8.4 8.8 9.9 8.9 7.9 – 6.0 5.7 11.9 10.1
Clayton 5.1 5.3 24.4 21.3 26.2 18.5 – 7.9 7.4 17.4 29.4

Gumbel 5.2 6.0 13.5 8.8 14.2 11.4 – 6.3 6.3 10.0 14.9

Frank 5.8 5.6 5.5 7.3 5.6 5.4 – 5.4 4.8 5.7 5.9

0.4 Gaussian 12.2 9.1 9.4 9.2 9.5 6.8 – 5.6 6.5 13.1 10.7
Student-t 8.2 6.4 13.7 10.4 13.3 9.4 – 6.2 7.1 12.0 14.7

Clayton 6.8 5.2 65.4 47.5 62.4 34.6 – 15.9 16.9 46.6 68.2

Gumbel 6.5 6.0 29.1 9.6 26.0 15.7 – 8.4 9.1 18.0 26.6
Frank 5.9 4.8 4.9 6.3 5.2 4.7 – 4.1 5.1 5.3 5.3

500 0.2 Gaussian 7.6 6.7 11.2 15.3 10.3 10.3 – 6.7 7.3 10.3 11.8
Student-t 47.8 26.9 28.0 20.5 26.5 25.2 – 12.4 13.4 48.0 29.2
Clayton 7.6 7.1 87.7 81.0 84.2 66.4 – 27.5 27.5 74.3 87.8

Gumbel 11.4 10.3 55.6 31.9 44.5 41.8 – 15.1 15.9 41.1 49.2
Frank 5.5 4.9 4.5 7.2 5.4 5.1 – 4.6 5.4 4.9 5.5

0.4 Gaussian 30.3 23.1 42.5 35.1 32.7 23.2 – 14.0 14.9 47.5 42.2
Student-t 20.9 14.5 68.5 28.6 57.1 46.2 – 22.3 21.5 58.9 63.8
Clayton 11.9 9.5 100 99.9 100 97.6 – 83.9 85.2 99.9 100

Gumbel 9.9 12.2 95.2 47.5 85.8 77.3 – 41.7 41.2 81.2 89.9
Frank 6.0 4.8 4.2 6.4 4.7 4.0 – 4.6 5.0 4.9 5.0

4 100 0.2 Gaussian 4.8 9.3 27.6 27.0 24.8 10.3 – 6.9 6.9 18.2 29.8

Student-t 44.0 25.9 40.0 41.1 36.8 20.3 – 8.2 7.7 59.2 44.5
Clayton 6.5 8.5 68.0 75.0 87.1 41.9 – 13.2 8.5 71.9 88.4

Gumbel 10.2 5.3 19.6 3.9 33.8 50.5 – 11.2 7.2 27.3 31.1
Frank 5.5 5.3 4.5 4.9 4.8 4.7 – 5.2 5.1 5.2 4.8

0.4 Gaussian 14.1 29.4 30.1 33.1 31.3 18.4 – 10.8 7.6 43.9 37.3
Student-t 18.5 16.7 47.4 53.0 43.3 29.2 – 13.0 9.3 49.8 53.6

Clayton 4.5 9.8 95.5 97.5 98.0 62.1 – 47.1 19.4 93.8 98.8

Gumbel 9.7 5.1 58.0 7.2 54.7 65.3 – 21.3 9.1 44.0 56.6
Frank 5.6 4.8 5.4 5.4 5.3 5.7 – 5.2 4.6 5.4 5.5

500 0.2 Gaussian 13.4 38.1 86.1 79.1 66.0 57.7 – 19.8 15.9 77.3 76.2
Student-t 99.0 90.2 97.4 95.7 88.3 88.7 – 34.3 27.9 99.9 95.2
Clayton 11.2 31.1 100 100 100 99.7 – 66.7 37.3 100 100

Gumbel 26.6 7.8 84.7 22.0 91.9 97.5 – 56.8 25.5 91.2 92.5
Frank 5.6 5.4 5.1 4.9 4.4 5.6 – 4.9 5.0 5.8 4.5

0.4 Gaussian 78.9 93.7 98.3 95.3 90.9 74.2 – 58.9 40.3 99.9 95.7
Student-t 72.0 78.8 99.9 99.6 98.6 95.8 – 72.2 52.2 100 99.6
Clayton 8.0 36.9 100 100 100 100 – 99.9 96.5 100 100

Gumbel 35.0 6.9 99.9 51.9 99.7 99.9 – 91.5 54.4 99.7 99.8
Frank 4.9 5.1 5.3 6.0 5.0 5.1 – 5.7 4.8 5.0 5.3

8 100 0.2 Gaussian 1.0 20.5 81.2 68.2 60.8 12.5 – 11.2 6.3 26.9 72.6
Student-t 75.6 68.9 84.6 73.1 69.2 27.1 – 12.6 7.9 94.3 79.5
Clayton 2.6 15.5 83.6 94.6 97.7 36.5 – 22.7 8.6 79.5 97.4
Gumbel 20.3 5.0 35.7 22.2 63.2 87.7 – 39.8 7.8 43.7 60.4
Frank 4.5 5.1 4.7 5.2 4.8 4.8 – 5.5 5.1 4.9 4.8

0.4 Gaussian 11.7 62.0 93.6 81.4 60.1 24.2 – 25.7 8.2 78.1 73.4
Student-t 47.8 55.9 95.2 91.3 74.1 38.4 – 28.3 10.8 90.9 86.2
Clayton 1.3 18.1 98.7 99.8 99.9 69.4 – 81.0 39.4 98.5 99.9

Gumbel 26.5 7.9 72.8 29.5 74.7 93.7 – 50.3 11.0 67.6 77.0
Frank 5.0 4.8 4.6 5.2 5.1 5.5 – 4.7 4.4 4.9 5.0

500 0.2 Gaussian 47.7 94.1 100 100 99.8 99.0 – 66.6 15.1 100 100

Student-t 100 100 100 100 100 100 – 77.4 32.3 100 100

Clayton 6.3 82.8 100 100 100 100 – 93.7 35.8 100 100

Gumbel 71.4 6.0 95.9 74.3 100 100 – 98.5 34.1 98.9 100

Frank 4.5 4.8 4.3 5.1 5.2 5.3 – 5.6 5.3 5.5 5.1

0.4 Gaussian 100 100 100 100 99.9 93.1 – 97.6 37.9 100 100

Student-t 100 100 100 100 100 99.7 – 98.6 61.5 100 100

Clayton 8.3 83.7 100 100 100 100 – 100 99.6 100 100

Gumbel 93.3 16.3 100 95.1 100 100 – 99.9 62.5 100 100

Frank 5.0 4.6 4.7 4.9 4.6 4.2 – 5.3 4.7 4.4 4.6

Note: Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are
nominal levels and should correspond to the prescribed size of 5%. Numbers in bold indicates the
best performing approach. All powers are size-adjusted.

(IV.19)



84 Paper IV. Copula goodness-of-fit testing

A1
(i)

A1
(ii)

A2 A3 A4 A5 A7 A8 A9
(i)

A9
(ii)

0
20

40
60

80
10

0
P

ow
er

 d
iff

er
en

ce
 (

%
)

Figure IV.5: Distribution of power difference from the very best approach for
testing the Frank copula.

dard deviations of the estimated p-values (over d! permutations). The study is restricted to
dimension d = 5 for which there are d! = 120 different permutations, sample size n = 100
and dependence τ = 0.5. All reported values are averaged over 1000 independent simula-
tions. For some of the approaches there are two sources of variation; permutation order
and double bootstrap procedure. In order to see the effect of permutation order only, we
report the same p-value variation results when the permutation is kept fixed, see Table
IV.7.

From the two tables one can see that the permutation order adds no variance for ap-

proach A(i)
1 when the null hypothesis is the Gaussian copula. This permutation invariance

of approach A(i)
1 under the Gaussian null hypothesis is proved in Appendix IV.A. How-

ever, when using a different weight function or when the null hypothesis is different from
the Gaussian copula, variation is added due to the permutation order. Note that in- or
close to rejection regions, the variation due to permutation order is as great as in other
regions, relative to the mean. However, the practical effect will not be so important as the
conclusion will most probably be the same, regardless of permutation order. We see the
same for the other approaches. When the null- and alternative hypotheses are the same we
see that the average of the mean p-values are approximately 0.5 as they should be. We also
see that the variation in these cases are quite large, typically around 0.25 for approaches

A(ii)
1 , A3 and A8. For approach A(i)

1 we see that the variation is in general lower than for
the other approaches. Also note that for approach A8 the permutation order adds almost
no variation in any case as the estimated p-value will vary heavily even when keeping the
permutation order fixed. This is due to the construction of the approach. Random samples
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Table IV.6: Estimated mean p-value (mean of d! permutations) for approaches
based on Rosenblatt’s transformation. In parentheses the standard deviation over
all permutations is given. All quoted values are averaged over 100 simulations.

H0 H1 A
(i)
1 A

(ii)
1 A3 A8

Gaussian Gaussian 0.514 (0.000) 0.520 (0.263) 0.513 (0.287) 0.510 (0.290)
Clayton 0.501 (0.000) 0.480 (0.239) 0.021 (0.038) 0.205 (0.201)
Gumbel 0.479 (0.000) 0.460 (0.237) 0.549 (0.294) 0.294 (0.247)
Frank 0.415 (0.000) 0.419 (0.232) 0.535 (0.311) 0.428 (0.287)

Clayton Gaussian 0.003 (0.002) 0.008 (0.015) 0.312 (0.187) 0.248 (0.237)
Clayton 0.520 (0.159) 0.535 (0.263) 0.519 (0.269) 0.501 (0.283)
Gumbel 0.002 (0.002) 0.016 (0.024) 0.370 (0.222) 0.103 (0.139)
Frank 0.008 (0.004) 0.040 (0.051) 0.424 (0.226) 0.265 (0.242)

Gumbel Gaussian 0.082 (0.027) 0.095 (0.118) 0.109 (0.100) 0.390 (0.279)
Clayton 0.035 (0.012) 0.214 (0.181) 0.000 (0.001) 0.101 (0.129)
Gumbel 0.533 (0.110) 0.533 (0.270) 0.528 (0.264) 0.506 (0.287)
Frank 0.113 (0.034) 0.340 (0.239) 0.417 (0.246) 0.463 (0.286)

Frank Gaussian 0.242 (0.102) 0.129 (0.152) 0.104 (0.086) 0.380 (0.274)
Clayton 0.536 (0.153) 0.400 (0.248) 0.000 (0.001) 0.173 (0.184)
Gumbel 0.396 (0.135) 0.492 (0.265) 0.325 (0.227) 0.365 (0.267)
Frank 0.509 (0.151) 0.508 (0.272) 0.506 (0.245) 0.486 (0.281)

Note: Applied to n = 100 samples of d = 5 dimensional copulae with dependence parameter τ = 0.5.

from the null hypothesis copula are drawn in every computation of the statistic, inducing
large variation, at least when we are far from rejection regions.

To illustrate further, we look at so-called mixing tests. Two copulae are mixed in the
following way:

Cmix = (1 − β)C1 + βC2,

where β ∈ [0, 1] is the mixing parameter. We consider the case where C1 is the Clayton
copula while C2 is the Gumbel copula. So when β = 0, the mixed copula is equivalent to
the Clayton copula, while when β = 1 it is equivalent to the Gumbel copula. We draw
n = 500 random samples from the d = 5 dimensional mixed copula with dependences
τ1 = τ2 = 0.4. We then estimate the p-value under a Clayton null hypothesis for all values

of β, using approaches A(i)
1 , A(ii)

1 , A3 and A8, i.e. all approaches based on Rosenblatt’s
transformation. The p-value is estimated for each of the d! permutations of the variables
and the 95% confidence interval over the d! permutations is computed. This is repeated
1000 times and Figure IV.6 shows the resulting confidence intervals, averaged over the 1000
repetitions. Included in the figure are also the corresponding confidence intervals when the
permutation order is kept fixed. This way we can see the additional p-value variation

solely due to permutation order. We see that for approach A(i)
1 the additional variation is

substantial when the null hypothesis is true. However, as we move towards rejection, the
additional variation becomes negligible in the sense that the conclusion will be the same no
matter which permutation order is chosen. Again we note that the additional variation due

to permutation order is smaller for approach A(i)
1 than for the other approaches based on

Rosenblatt’s transformation. Note also, that for approach A(ii)
1 there is p-value variation

even when the permutation is kept fixed. This is due to the double parametric bootstrap
step concerned with the approximation of F1 in (IV.3.1). This is also the case for approach
A8 where we see only marginal additional variation due to permutation order.

Finally, we examine whether the utilization of all permutations may give us additional
power. The idea is that by computing a statistic for each permutation of the data, more
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Table IV.7: Estimated mean p-value (mean of d! separate estimations based on the
same data set) for approaches based on Rosenblatt’s transformation. In parentheses
the standard deviation over all permutations is given. All quoted values are averaged
over 100 simulations.

H0 H1 A
(i)
1 A

(ii)
1 A3 A8

Gaussian Gaussian 0.514 (0.000) 0.530 (0.057) 0.523 (0.000) 0.510 (0.284)
Clayton 0.501 (0.000) 0.483 (0.056) 0.021 (0.000) 0.205 (0.194)
Gumbel 0.479 (0.000) 0.458 (0.052) 0.559 (0.000) 0.294 (0.239)
Frank 0.415 (0.000) 0.416 (0.048) 0.551 (0.000) 0.432 (0.282)

Clayton Gaussian 0.002 (0.000) 0.008 (0.003) 0.318 (0.000) 0.250 (0.216)
Clayton 0.517 (0.000) 0.535 (0.056) 0.524 (0.000) 0.501 (0.275)
Gumbel 0.002 (0.000) 0.013 (0.003) 0.382 (0.000) 0.105 (0.125)
Frank 0.008 (0.000) 0.038 (0.007) 0.436 (0.000) 0.262 (0.218)

Gumbel Gaussian 0.080 (0.000) 0.089 (0.023) 0.104 (0.000) 0.390 (0.268)
Clayton 0.036 (0.000) 0.205 (0.036) 0.000 (0.000) 0.100 (0.123)
Gumbel 0.527 (0.000) 0.531 (0.061) 0.532 (0.000) 0.508 (0.281)
Frank 0.112 (0.000) 0.342 (0.050) 0.421 (0.000) 0.461 (0.278)

Frank Gaussian 0.240 (0.000) 0.129 (0.031) 0.109 (0.000) 0.381 (0.263)
Clayton 0.541 (0.000) 0.395 (0.055) 0.000 (0.000) 0.170 (0.174)
Gumbel 0.391 (0.000) 0.489 (0.059) 0.320 (0.000) 0.366 (0.257)
Frank 0.502 (0.000) 0.510 (0.063) 0.501 (0.000) 0.485 (0.274)

Note: Applied to n = 100 samples of d = 5 dimensional copulae with dependence parameter τ = 0.5.

information is extracted from the data and we may achieve higher power. This is inves-

tigated for approaches A(i)
1 and A3 in the case d = 4, n = 100, τ = 0.4 for H0 and H1

being one of the Gaussian-, Clayton-, Gumbel- or Frank copulae. We simply compute the
average of the statistics over the d! permutations. Table IV.8 shows the results, along with
corresponding results (permutation fixed) from Tables IV.1, IV.3, IV.4 and IV.5. We see
that averaging over all d! permutations adds some power, e.g. for A3 for H0 =Gaussian,
H1 =Clayton where the power increases from 81% to 95%. Hence, this might be a fruitful
idea to pursue in future research. Perhaps one can find clever ways of averaging only over
a few of the d! permutations, and still gain most of the power increase.

IV.5 Discussion and recommendations

An overview of six copula GoF approaches was given, along with the proposal of three new
approaches. A large Monte Carlo study was presented, examining the nominal levels and
the power against some fixed alternatives under several combinations of problem dimension,
sample size and dependence.

Results show, in general, increasing power with dimension, sample size and dependence,
which is expected. Further, the results show that approach A2, the approach based on a
distance between the empirical- and null hypothesis copula distribution functions, is in
general the best approach, with approach A4 as a strong runner up. However, in some
cases, e.g. when testing the Gaussian hypothesis against heavy tails, approach A2 does
not perform so well. In this case, however, the otherwise poor approach A1 performs
very well for high dimensions and large sample sizes. However, in general, approach A2

is recommended. One should consider supplmenting it with approaches A4 and A(i)
1 , in

particular if no strong a priori opinions exist as to which distribution we are testing for
and what kind of deviations to detect. Average approaches merge the qualities of all the
approaches included in the averaging and provides more stable power performance than the
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Figure IV.6: P -value variation due to permutation order for approaches based on
Rosenblatt’s transformation. Average 95% confidence intervals over 1000 separate
mixed copula simulations. The null hypothesis is the Clayton copula while the alter-
native hypothesis is the Gumbel copula. The black lines represent the variation over
d! permutation orders while the red lines represent the variation when permutation
is kept fixed.

individual approaches. However, the topic of averaging different approaches was included
as a hint of further research and needs more work. Finally, to decide which approaches to
consider, a preliminary test of ellipticity (see e.g. Huffera and Park (2007)) can be helpful.

When doing model evaluation, it is recommended to also examine various diagnostic
tests such as GoF plots, e.g. plotting S4(w) with simulated null hypothesis confidence
bands as done in Genest et al. (2006a). This may give valuable information on the fit of a
copula. However, there is still a need for intuitive and informative diagnostic plots. Ideally
such a plot should show, in some way and in case of rejection by the formal tests, which
variable (i.e. which dimension) and/or which samples causes the rejection. Is it actually a
deviation in the dependence structure between the variables or some extreme samples that
cause the rejection? More research is needed on this topic.

Next, results were reported on the variation of the p-value estimates due to permuta-
tion order for approaches based on Rosenblatt’s transformation. In general, one does not
want a statistical testing procedure to give different values when running it several times
on the same data set. However, for some of the approaches based on Rosenblatt’s transfor-
mation, the estimated p-value will be different depending on which permuation order that
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Table IV.8: Percentage of rejections (at 5% significance level) by approaches A(i)
1

and A3 when computing the average of T̂
(i)
1 and T̂3 over all d! permutations. These

are denoted by A(i)
1,d! and A3,d! and they are compared to corresponding rejection rates

for the original approaches A(i)
1 and A3, that only consider one, fixed permutation.

H0 H1 A
(i)
1 A

(i)
1,d! A3 A3,d!

Gaussian Gaussian 4.7 5.2 5.1 4.9

Clayton 1.0 1.0 80.8 94.9
Gumbel 1.5 1.7 3.6 2.2
Frank 1.6 1.8 7.3 6.6

Clayton Gaussian 78.3 83.4 3.0 4.7
Clayton 5.2 5.7 5.5 5.1

Gumbel 79.1 83.2 4.9 6.1
Frank 68.7 74.5 3.2 3.4

Gumbel Gaussian 29.7 30.0 44.0 62.9
Clayton 26.8 26.0 99.1 99.9
Gumbel 5.0 5.3 5.2 5.2

Frank 17.8 18.4 12.5 18.3
Frank Gaussian 14.1 14.6 33.1 48.4

Clayton 4.5 4.0 97.5 99.5
Gumbel 9.7 8.9 7.2 6.8
Frank 5.6 5.1 5.4 5.3

Note: Dimension d = 4, sample size n = 100 and dependence τ = 0.4. Numbers in italic are nominal
levels and should correspond to the prescribed size of 5%. All powers are size-adjusted.

is chosen. This effect decreases as the p-value estimates approach critical levels. Hence,
the author does not believe that the permutation effect is something to worry about. On
the contrary, the permutational invariance may actually be useful, as seen when averaging
over all permutations increases the power of some of the approaches. Also, as long as
the permutation order is chosen randomly, the results are not influenced in any particular
direction.

The results concerning the permutation of variables also point in direction of important
future research. The variation of p-value estimates also depends on the bootstrap param-
eters M and Nb. These parameters are usually, in a rather arbitrary way, set to what is
believed to be large values. This is also the case in this paper. However, there has been no
study of the effect these choices may have on the power, and even more importantly the
nominal levels of an approach. Originally, in the power studies of Section IV.4.1, a double
bootstrap parameter Nb = 2500 was chosen for all combinations of dimension, sample size,
dependence and alternative copula. However, for dimension d = 8 we observed some pe-
culiar results, e.g. decreasing power as sample size increased. These peculiarities vanished
when increasing Nb to 5000 for dimension d = 8. Choosing appropriately large values for
these parameters and thus achieving proper nominal levels is crucial for any study and/or
application of these GoF approaches. Hence, a study of the effects of these parameters and
required minimum values would be highly interesting.

The computational aspect also deserves some attention. An important quality of ap-
proaches based on Rosenblatt’s transform is computational efficiency. Approaches A2, A4

and A5 need computationally intensive double parametric bootstrap procedures to estimate
p-values in some cases (e.g. for the elliptical copulae, in particular for higher dimensions
and large sample sizes). Approaches based on Rosenblatt’s transformation does not, in
general, need this double bootstrap step, since after Rosenblatt’s transformation, the null
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hypothesis is always independence.
Finally, a word of warning. As emphasized in Genest et al. (2008), the asymptotics of

several of the procedures presented here are not known. Hence, one cannot know for sure
whether a bootstrap procedure will converge in every case. However, all the results so far
on the performance of the proposed approaches and bootstrap procedures are comforting
and strongly indicate the validity of the test procedures. Keep in mind though, the original
approach and test procedure proposed by Breymann et al. (2003), which showed terrible
performance in the study of Dobrić and Schmid (2007). This shows how wrong it can all
go if our test procedure is not valid. Approaches A2 and A4, that turned out to be the
best in our study, both have known asymptotics and the bootstrap procedures for these
approaches are well established from Quessy (2005), Genest et al. (2006a) and Genest
and Rémillard (2008). Hence, for the time being, these are the recommended for copula
goodness-of-fit testing.
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IV.A Proof of permutation invariance of A(i)
1 under Gaussian

copula null hypothesis

To prove that approach A(i)
1 is permutatoin invariant under the Gaussian copula null

hypothesis, let us first look at how Rosenblatt’s transformation is carried out. For the
Gaussian copula null hypothesis, this transformation is easily computed using the Cholesky
decomposition of the covariance matrix. Let X ∼ N (μ,Σ) be a d-dimensional vector,
where μ = E(X) and Σ is the d × d positive definite covariance matrix.

Since Σ is positive definite it can be written as Σ = A
T
A, where A is a lower triangular

matrix and A
T denotes its transpose. Next, it is well known that X can be expressed as

X = μ + A
T
Y where Y ∼ N (0, I) and I is the d-dimensional identity matrix. I.e.

Y is a vector of d i.i.d. standard normally distributed variables. Solving for Y gives
Y = (AT )−1(X − μ). We now see that the vector V = Φ(Y) is i.i.d. U(0, 1)d under the
Gaussian null hypothesis.

For approach A(i)
1 we now need to compute W1 =

∑d
i=1 Φ−1(Vi)

2 =
∑d

i=1 Y 2
i = Y

T
Y.

We now proceed with the bivariate setting for simplicity but the proof can easily be ex-
tended to arbitrary dimension d. Consider the Cholesky decomposition of the covariance
matrix Σ = A

T
A in detail:

Σ
1 =

(
σ2

1 σ12

σ12 σ2
2

)
=

(
a11 a12

0 a22

)(
a11 0
a12 a22

)
=

(
a2

11 + a2
12 a12a22

a12a22 a2
22

)
,

where the superscript 1 in Σ
1 denotes permutation order 1. We see now that a11 =√

σ2
1σ

2
2 − σ2

12/σ2, a12 = σ12/σ2 and a22 = σ2. Next, we see that

(AT )−1 =

( 1
a11

− a12
a11a22

0 1
a22

)
and that

Y = (AT )−1(X− μ) =

( 1
a11

(X1 − μ1) − a12
a11a22

(X2 − μ2)
1

a22
(X2 − μ2)

)
.

Now to compute W 1
1 = Y

T
Y, superscript 1 denoting permutation order 1, we get

W 1
1 =

(X1 − μ1)
2

a2
11

+
a2

12

a2
11a

2
22

(X2 − μ2)
2 − 2a12

a2
11a22

(X1 − μ1)(X2 − μ2) +
(X2 − μ2)

2

a2
22

=
(X1 − μ1)

2σ2
2 + (X2 − μ2)

2σ2
1 − 2(X1 − μ1)(X2 − μ2)σ12

σ2
1σ

2
2 − σ2

12

by inserting σ’s for the a’s.

By doing the same exercise with permutation order 2 we first get

Σ
2 =

(
σ2

2 σ12

σ12 σ2
1

)
and a11 =

√
σ2

1σ
2
2 − σ2

12/σ1, a12 = σ12/σ1 and a22 = σ1. Next, in the same manner as
above, it is easily shown that
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W 2
1 =

(X2 − μ2)
2σ2

1 + (X1 − μ1)
2σ2

2 − 2(X1 − μ1)(X2 − μ2)σ12

σ2
1σ

2
2 − σ2

12

= W 1
1 .

Hence we have shown that approach A(i)
1 is permutation invariant under the Gaussian

copula null hypothesis. This is not so for other weight functions or other null hypothesis
copulae. The invariance stems from the use of Φ−1 which cancels out with the Φ in
V = Φ(Y) and the squaring Φ(Vi)

2.

IV.B Derivation of a Cramér-von Mises statistic

Consider the Cramér–von Mises (CvM) statistic

T = n

∫ 1

0
{F̂ (w) − F (w)}2dF (w),

where F̂ (w) = 1
n+1

∑n
j=1 I(Xj ≤ t) is the empirical distribution function, equivalent to

the normalized ranks used in the construction of the pseudo-vector Z in (IV.2). Given a
random sample (x1, . . . , xn), the empirical version T̂ of the CvM statistic can be derived
as follows.

T̂ =n

∫ 1

0
{F̂ (w) − F (w)}2dF (w)

=n

∫ 1

0
F̂ (w)2dF (w) − 2n

∫ 1

0
F̂ (w)F (w)dF (w) + n

∫ 1

0
F (w)2dF (w).

Since F̂ (w) is constant and equal to F̂ (j/(n + 1)) between j/(n + 1) and (j + 1)/(n + 1)
for j = 1, . . . , n, the first two integrals can be split into n smaller integrals:

T̂ =n
n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)
F̂

(
j

n + 1

)2

dF (w)

−2n

n∑
j=1

∫ (j+1)/(n+1)

j/(n+1)
F̂

(
j

n + 1

)
F (w)dF (w) +

n

3

[
F (w)3

]1

0

=
n

3
+ n

n∑
j=1

F̂

(
j

n + 1

)2 {
F

(
j + 1

n + 1

)
− F

(
j

n + 1

)}

−n

n∑
j=1

F̂

(
j

n + 1

){
F

(
j + 1

n + 1

)2

− F

(
j

n + 1

)2
}

.

For approach A1 the test observator S1(w) is U [0, 1] under the null hypothesis. Hence
F (w) = w and we easily see that T̂ reduces to

T̂ ′ =
n

3
+

n

n + 1

n∑
j=1

F̂

(
j

n + 1

)2

− n

(n + 1)2

n∑
j=1

(2j + 1)F̂

(
j

n + 1

)
.
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IV.C Test procedures

Suppose we have observed the sample data (x1, . . . ,xn). The following parametric boot-
strap procedures lead to proper p-value estimates for a parametric null hypothesis copula.

IV.C.1 Approach A1 (Berg and Bakken, 2007)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Compute (v1, . . . ,vn) = R(z1, . . . , zn) assuming the parametric null hypothesis copula
Cθ̂. Here R(z1, . . . , zn) = (R(z11, . . . , z1d), . . . ,R(zn1, . . . , znd)) where R(z11, . . . , z1d) =
(R1(z11), . . . ,Rd(z1d)) denotes Rosenblatt’s transformation as presented in Definition IV.1.

(4) Compute (h1, . . . ,hn) = R(v1, . . . ,vn).

(5) Compute W1 according to (IV.3), using weight functions ΓV and ΓH on (v1, . . . ,vn) and
(h1, . . . ,hn) respectively.

(6) If W1 follows a known distribution under the null hypothesis, compute F1(W1) accordingly
and jump to step (8).
If not, approximate F1 as follows. For some large integer Nb, repeat the following steps for
every l ∈ {1, . . . , Nb}:

(i) Generate a random sample v
∗
l = (v∗1,l, . . . , v

∗
d,l) from the null hypothesis copula, namely

an i.i.d. U [0, 1]d vector.

(ii) Compute h
∗
l = (h∗

1,l, . . . , h
∗
d,l) = R(v∗1,l, . . . , v

∗
d,l).

(iii) Compute W ∗
1,l according to (IV.3) using the same weight functions ΓV and ΓH as in

step (5) but now on (v∗1,l, . . . , v
∗
d,l) and (h∗

1,l, . . . , h
∗
d,l) respectively.

(7) Compute F1(W1) = 1
Nb+1

∑Nb

l=1 I{W ∗
1,l > W1}.

(8) Compute T̂1 according to (IV.4) and (IV.5).

(9) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cθ̂ and
compute the associated pseudo-samples (z0

1,k, . . . , z0
n,k) according to (IV.2).

(b) Estimate the parameters θ0 with θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Compute (v0
1,k, . . . ,v0

n,k) = R(z0
1,k, . . . , z0

n,k) assuming the parametric null hypothesis
copula Cθ̂0

k
.

(d) Compute (h0
1,k, . . . ,h0

n,k) = R(v0
1,k, . . . ,v0

n,k).

(d) Compute W 0
1,k according to (IV.3), using the same weight functions ΓV and ΓH as in

step (5), now on (v0
1,k, . . . ,v0

n,k) and (h0
1,k, . . . ,h0

n,k) respectively.

(e) If W 0
1,k follows a known distribution under the null hypothesis, compute F1(W

0
1,k)

accordingly and jump to step (g).
If not, approximate F1 as follows. For some large integer Nb, repeat the following steps
for every l ∈ {1, . . . , Nb}:
(i) Generate a random sample v

0∗
l,k = (v0∗

1,l,k, . . . , v0∗
d,l,k) from the null copula, an i.i.d.

U [0, 1]d vector.

(ii) Compute h
0∗
l,k = (h0∗

1,l,k, . . . , h0∗
d,l,k) = R(v0∗

1,l,k, . . . , v0∗
d,l,k).
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(iii) Compute W 0∗
1,l,k according to (IV.3) using the same weight functions ΓV and ΓH

as in step (5) but now on (v0∗
1,l,k, . . . , v0∗

d,l,k) and (h0∗
1,l,k, . . . , h0∗

d,l,k) respectively.

(f) Compute F1(W
0
1 ) = 1

Nb+1

∑Nb

l=1 I{W 0∗
1,l,k > W 0

1,k}.
(g) Compute T̂ 0

1,k according to (IV.4) and (IV.5).

(10) An approximate p-value for approach A1 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

1,k > T̂1}.

IV.C.2 Approach A2 (Genest et al., 2008)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Compute Ĉ(z) according to (IV.6).

(4) If there is an analytical expression for Cθ, compute the estimated statistic T̂2 by plugging
Ĉ(z) and Cθ̂(z) into (IV.7). Jump to step (5).
If there is no analytical expression for Cθ then choose Nb ≥ n and carry out the following
steps:

(i) Generate a random sample (x∗
1, . . . ,x

∗
Nb

) from the null hypothesis copula Cθ̂ and com-
pute the associated pseudo-samples (z∗1, . . . , z

∗
Nb

) according to (IV.2).

(ii) Approximate Cθ̂ by C∗
θ̂
(u) = 1

Nb+1

∑Nb

l=1 I{z∗l ≤ u}, u ∈ [0, 1]d.

(iii) Approximate the CvM statistic in (IV.7) by T̂2 =
∑n

j=1

{
Ĉ(zj) − C∗

θ̂
(zj)

}2

.

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:
(a) Generate a random sample (x0

1,k, . . . ,x0
n,k) from the null hypothesis copula Cθ̂ and

compute the associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (IV.2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Let Ĉ0
k(u) = 1

n+1

∑n
j=1 I{z0

j,k ≤ u}, u ∈ [0, 1]d.

(d) If there is an analytical expression for Cθ, let T̂ 0
2,k =

∑n
j=1

{
Ĉ0

k(z0
j,k) − Cθ̂0

k
(z0

j,k)
}2

and jump to step (6).
If there is no analytical expression for Cθ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x0∗
1,k, . . . ,x0∗

Nb,k) from the null hypothesis copula Cθ̂0
k

and compute the associated pseudo-samples (z0∗
1,k, . . . , z0∗

Nb,k) according to (IV.2).

(ii) Approximate Cθ̂0
k

by C0∗
θ̂0

k

(u) = 1
Nb+1

∑Nb

l=1 I{z0∗
l,k ≤ u}, u ∈ [0, 1]d,

(iii) Approximate the CvM statistic in (IV.7) by T̂ ∗
2,k =

∑n
j=1

{
Ĉ0

k(z0
j,k) − C0∗

θ̂0
k

(z0
j,k)

}2

.

(6) An approximate p-value for approach A2 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

2,k > T̂2}.

IV.C.3 Approach A3 (Genest et al., 2008)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Compute (v1, . . . ,vn) = R(z1, . . . , zn) assuming the parametric null hypothesis copula Cθ̂.

(IV.29)
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(3) Compute Ĉ(v) according to (IV.6).

(4) Compute T̂3 according to (IV.8).

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:
(a) Generate a random sample (x1,k, . . . ,x0

n,k) from the null hypothesis copula Cθ̂ and
compute the associated pseudo-samples (z0

1,k, . . . , z0
n,k) according to (IV.2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Compute (v0
1,k, . . . ,v0

n,k) = R(z0
1,k, . . . , z0

n,k).

(d) Let Ĉ0
k(u) = 1

n+1

∑n
j=1 I{v0

j,k ≤ u}, u ∈ [0, 1]d.

(e) Compute T̂ 0
3,k =

∑n
j=1

{
Ĉ0

k(v0
j,k) − C⊥(v0

j,k)
}2

.

(6) An approximate p-value for approach A3 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

3,k > T̂3}.

IV.C.4 Approach A4 (Genest et al., 2008)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Compute Ĉ(z) according to (IV.6).

(4) If there is an analytical expression for S4,θ, compute the statistic T̂4 according to (IV.9) and
(IV.10). Jump to step (5).
If there is no analytical expression for S4,θ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x∗
1, . . . ,x

∗
Nb

) from the null hypothesis copula Cθ̂ and com-
pute the associated pseudo-samples (z∗1, . . . , z

∗
Nb

) according to (IV.2).

(ii) Approximate S4,θ̂ by Ŝ∗
4 (w) = 1

Nb+1

∑Nb

l=1 I{Ĉ∗(z∗l ) ≤ w}, where

Ĉ∗(u) = 1
Nb+1

∑Nb

l=1 I{z∗l ≤ u}, u ∈ [0, 1]d.

(iii) Approximate the CvM statistic in (IV.10) by

T̂4 = n
Nb

∑Nb

l=1

{
Ŝ4

(
Ĉ∗(z∗l )

)
− Ŝ∗

4

(
Ĉ∗(z∗l )

)}
.

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:
(a) Generate a random sample (x0

1,k, . . . ,x0
n,k) from the null hypothesis copula Cθ̂ and

compute the associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (IV.2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Let Ŝ0
4,k(w) = 1

n+1

∑n
j=1 I{Ĉ0

k(z0
j,k) ≤ w}, where Ĉ0

k(u) = 1
n+1

∑n
j=1 I{z0

j,k ≤ u}.
(d) If there is an analytical expression for S4,θ, compute the statistic T̂ 0

4,k by using Ŝ0
4,k

and S4,θ̂0
k

in (IV.10). Jump to step (6).
If there is no analytical expression for S4,θ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x0∗
1,k, . . . ,x0∗

Nb,k) from the null hypothesis copula Cθ̂0
k

and compute the associated pseudo-samples (z0∗
1,k, . . . , z0∗

Nb,k) according to (IV.2).

(ii) Approximate S4,θ̂0
k

by Ŝ0∗
4,k(w) = 1

Nb+1

∑Nb

l=1 I{Ĉ0∗
k (z0∗

l,k) ≤ w}, where

Ĉ0∗
k (u) = 1

Nb+1

∑Nb

l=1 I{z0∗
l,k ≤ u}, u ∈ [0, 1]d.

(iii) Approximate the CvM statistic in (IV.10) by

T̂ 0
4,k = n

Nb

∑Nb

l=1

{
Ŝ0

4,k

(
Ĉ0∗

k (z0∗
l,k)

)
− Ŝ0∗

4,k

(
Ĉ0∗

k (z0∗
l,k)

)}
.

(6) An approximate p-value for approach A4 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

4,k > T̂4}.

(IV.30)
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IV.C.5 Approach A5

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) If there is an analytical expression for S5,θ, compute the statistic T̂5 according to (IV.11)
and (IV.12). Jump to step (4).
If there is no analytical expression for S5,θ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x∗
1, . . . ,x

∗
Nb

) from the null hypothesis copula Cθ̂ and com-
pute the associated pseudo-samples (z∗1, . . . , z

∗
Nb

) according to (IV.2).

(ii) Approximate S5,θ̂ by Ŝ∗
5 (w) = 1

Nb+1

∑Nb

l=1 I{C⊥(z∗l ) ≤ w}.
(iii) Approximate the CvM statistic in (IV.12) by

T̂5 = n
Nb

∑Nb

l=1

{
Ŝ5 (C⊥(z∗l )) − Ŝ∗

5 (C⊥(z∗l ))
}

.

(4) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:
(a) Generate a random sample (x0

1,k, . . . ,x0
n,k) from the null hypothesis copula Cθ̂ and

compute the associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (IV.2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Let Ŝ0
5,k(w) = 1

n+1

∑n
j=1 I{C⊥(z0

j,k) ≤ w}.
(d) If there is an analytical expression for S5,θ, compute the statistic T̂ 0

5,k by using Ŝ0
5,k

and S5,θ̂0
k

in (IV.12). Jump to step (5).
If there is no analytical expression for S5,θ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x0∗
1,k, . . . ,x0∗

Nb,k) from the null hypothesis copula Cθ̂0
k

and compute the associated pseudo-samples (z0∗
1,k, . . . , z0∗

Nb,k) according to (IV.2).

(ii) Approximate S5,θ̂0
k

by Ŝ0∗
5,k(w) = 1

Nb+1

∑Nb

l=1 I{C⊥(z0∗
l,k) ≤ w}.

(iii) Approximate the CvM statistic in (IV.12) by

T̂ 0
5,k = n

Nb

∑Nb

l=1

{
Ŝ0

5,k

(
C⊥(z0∗

l,k)
)
− Ŝ0∗

5,k

(
C⊥(z0∗

l,k)
)}

.

(5) An approximate p-value for approach A5 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

5,k > T̂5}.

IV.C.6 Approach A6

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Estimate the parameters θ̂τ and θ̂W according to (IV.13).

(4) Compute T̂6 according to (IV.14).

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:
(a) Generate a random sample (x0

1,k, . . . ,x0
n,k) from the null hypothesis copula Cθ̂ and

compute the associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (IV.2).

(b) Estimate the parameters θ̂0
τ,k and θ̂0

W,k according to (IV.13).

(c) Compute T̂ 0
6,k according to (IV.14) using θ̂0

τ,k and θ̂0
W,k.

(6) An approximate p-value for approach A6 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

6,k > T̂6}.

(IV.31)
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IV.C.7 Approach A7 (Panchenko (2005) – corrected)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Generate a random sample (x∗
1, . . . ,x

∗
n) from the null hypothesis copula Cθ̂ and compute

the associated pseudo-samples (z∗1, . . . , z
∗
n) according to (IV.2).

(4) Compute T̂7 according to (IV.15) using (z1, . . . , zn) and (z∗1, . . . , z
∗
n).

(5) For some large integer K, repeat the following steps for each k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cθ̂ and
compute the associated pseudo-samples (z0

1,k, . . . , z0
n,k) according to (IV.2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Generate a random sample (x0∗
1,k, . . . ,x0∗

n,k) from the null hypothesis copula Cθ̂0
k

and

compute the associated pseudo-samples (z0∗
1,k, . . . , z0∗

n,k) according to (IV.2).

(d) Compute T̂ 0
7,k according to (IV.15) using (z0

1,k, . . . , z0
n,k) and (z0∗

1,k, . . . , z0∗
n,k).

(6) An approximate p-value for approach A7 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

7,k > T̂7}.

IV.C.8 Approach A8

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Compute (v1, . . . ,vn) = R(z1, . . . , zn) assuming the parametric null hypothesis copula Cθ̂.

(4) Generate a random sample (v∗
1, . . . ,v

∗
n) from the independence copula.

(5) Compute T̂8 according to (IV.16) using (v1, . . . ,vn) and (v∗
1 , . . . ,v∗

n).

(6) For some large integer K, repeat the following steps for each k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cθ̂ and
compute the associated pseudo-samples (z0

1,k, . . . , z0
n,k) according to (IV.2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Compute (v0
1,k, . . . ,v0

n,k) = R(z0
1,k, . . . , z0

n,k) assuming the parametric null hypothesis
copula Cθ̂0

k
.

(d) Generate a random sample (v0∗
1,k, . . . ,v0∗

n,k) from the independence copula.

(e) Compute T̂ 0
8,k according to (IV.16) using (v0

1,k, . . . ,v0
n,k) and (v0∗

1,k, . . . ,v0∗
n,k).

(7) An approximate p-value for approach A8 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

8,k > T̂8}.

(IV.32)
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IV.C.9 Approach A9

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into
normalized ranks according to (IV.2).

(2) Estimate the parameters θ with a consistent estimator θ̂ = V̂(z1, . . . , zn).

(3) Compute T̂
(i)
1 , T̂

(ii)
1 , T̂2-T̂8 by carrying out the appropriate steps of test procedures IV.C.1-

IV.C.8 using (z1, . . . , zn) and θ̂.

(4) Compute T̂9 according to (IV.17).

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:
(a) Generate a random sample (x0

1,k, . . . ,x0
n,k) from the null hypothesis copula Cθ̂ and

compute the associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (IV.2).

(b) Estimate the parameters θ0 with a consistent estimator θ̂0
k = V̂(z0

1,k, . . . , z0
n,k).

(c) Compute T̂
0,(i)
1,k , T̂

0,(ii)
1,k , T̂ 0

2,k-T̂ 0
8,k by carrying out the appropriate steps of test proce-

dures IV.C.1-IV.C.8 using (z0
1,k, . . . , z0

n,k) and θ̂0
k.

(d) Compute T̂ 0
9,k according to (IV.17) using T̂

0,(i)
1,k , T̂

0,(ii)
1,k , T̂ 0

2,k-T̂ 0
8,k.

(6) An approximate p-value for approach A9 is then given by p̂ = 1
K+1

∑K
k=1 I{T̂ 0

9,k > T̂9}.

(IV.33)
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V.1 Introduction

Copula functions contain all the information about the dependence structure of a random vector.
Indeed, due to the representation theorem of Sklar (1959), every bivariate distribution function
H can be written as H(x, y) = C {F (x), G(y)}, where F and G are the marginal distributions
and C : [0, 1]2 → [0, 1] is the copula. It turns out that C, which is unique when F and G are
continuous, is a distribution function with uniform marginals on [0, 1]. This representation enables
practitioners to model the marginal behaviours and the dependence structure in separate steps.
While the adjustment of univariate distributions is well documented, the study of goodness-of-fit
tests for copulas emerged only recently as a challenging inferential problem.

Let C be the underlying copula of a bivariate population with continuous marginals and suppose
one wants to test the goodness-of-fit hypotheses H0 : C ∈ F = {Cθ; θ ∈ M} and H1 : C /∈ F =
{Cθ; θ ∈ M}, where M is the parameter space. Test statistics that help discriminate between
H0 and H1 have been proposed by Fermanian (2005), Genest et al. (2006a), Scaillet (2006) and
Chen and Fan (2005), among others. A bayesian selection procedure has also been investigated by
Huard et al. (2006). In most cases, the efficiency of these methods, i.e. the power, is approximated
by simulating repeatedly from a fixed alternative copula D /∈ F . This is done, in particular,
in the works of Genest et al. (2008) and Berg (2007b), where extensive simulation results and
recommendations are provided.

One of the most desirable properties of a statistical procedure is its ability to detect small
departures from the null hypothesis. In the context of testing the fit to a particular copula family,
such perturbations from H0 are given by the sequence of distributions

Qδn(x, y) =

(
1 − δ√

n

)
C(x, y) +

δ√
n

D(x, y), (V.1)

where δn = n−1/2δ, δ > 0 and C, D are bivariate copulas such that C ∈ F . This mixture
distribution is a copula for all 0 < δ ≤ n1/2. It is supposed throughout the paper that Qδn belongs
to F only at the limit when n → ∞. Moreover, in order to ensure that the departure from H0

increases as δ becomes larger (at least for large values of n), it is assumed throughout that the
copula D stochastically dominates C, i.e. D(x, y) ≥ C(x, y) for all (x, y) ∈ [0, 1]2. The skill of a
goodness-of-fit test to reject H0 under (V.1) can easily be motivated from applications in finance,
where it is often advisable to detect changes in the dependence pattern over time, e.g. regime
shifts for commodity markets.

In this paper, the asymptotic non-degenerate distribution of some goodness-of-fit statistics is
investigated under the sequence (Qδn)n≥1 of alternatives. The focus is put on a Cramér-von Mises
type statistic computed from a version of the empirical copula process and on simple but efficient
moment-based test statistics. The characterization of their limiting behaviour enables to compute
asymptotic local power curves from which comparisons between the goodness-of-fit statistics under
investigation can be made.

In Section V.2, the goodness-of-fit test statistics studied in this work are defined. In Section
V.3, their asymptotic distribution under alternatives of the form (V.1) are obtained. These results
enable to compute, in Section V.4, the local power curves of the statistics under study and hence
to compare the latter under chosen scenarios of local distributions. In Section V.5, a new measure
of asymptotic relative efficiency generalizing that of Pitman is described and computed for many
cases. This index is particularly useful for the Cramér-von Mises goodness-of-fit statistic whose
local power curve has no explicit expression. An extensive simulation study that aim to investigate
the local behaviour of the testing procedures in small and moderate sample sizes and compare with
the asymptotic results follows in Section V.6. The paper ends with a discussion of ideas for future
investigations.

V.2 Some goodness-of-fit statistics for copula families

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate population with continuous marginal
distributions F , G and whose underlying copula is C. In Subsections V.2.1, V.2.2 and V.2.3, sta-

(V.2)
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tistical procedures to determine if C belongs or not to a parametric family F = {Cθ; θ ∈ M} are
described. It is assumed throughout that M is a subset of the real line, so that θ can be estimated
by an empirical version of a moment of Cθ. Since all statistics considered in this work are invari-
ant under strictly increasing transformations of the variables, one can consider, for simplicity and
without any loss of generality, that the marginal distributions are uniform on the interval [0, 1].

V.2.1 The empirical copula goodness-of-fit process

A consistent estimation of a copula is possible via the empirical copula, which Deheuvels (1979)
described as the distribution function of the sample of normalized ranks, i.e. (R̃1,n, S̃1,n), . . .,
(R̃n,n, S̃n,n), where R̃i,n = Fn(Xi) and S̃i,n = Gn(Yi), with

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x) and Gn(y) =
1

n

n∑
i=1

1(Yi ≤ y)

being the empirical marginal distributions. Explicitly, C is estimated by

Cn(x, y) =
1

n

n∑
i=1

1

(
R̃i,n ≤ x, S̃i,n ≤ y

)
. (V.2)

The weak consistency of the empirical process Cn,θ =
√

n(Cn − Cθ) to a centered gaussian limit
was obtained by Deheuvels (1979) under the hypothesis of independence, i.e. in the special case
when Cθ(x, y) = xy. This result was extended under general distributions by Gänssler and Stute
(1987), Fermanian et al. (2004) and Tsukahara (2005). A suggestion made by Fermanian (2005)
and exploited by Quessy (2005) and Genest et al. (2008) consists in basing a goodness-of-fit test
on a modified version of Cn,θ, namely Cn =

√
n(Cn − Cθ̂n

), where θ̂n consistently estimates θ.
As shown by Quessy (2005), Cn is weakly consistent under H0, if the following assumptions are
satisfied.

A1. For all θ ∈ M, the first order partial derivatives of Cθ exist and are continuous;

A2. (Cn,θ, Θn) converges jointly to a gaussian process (Cθ, Θ), where Θn =
√

n(θ̂n−θ). Moreover,
for all θ ∈ M and as ε ↓ 0,

sup
‖θ�−θ‖<ε

sup
(x,y)∈[0,1]2

∣∣∣Ċθ�(x, y) − Ċθ(x, y)
∣∣∣ −→ 0,

where Ċθ = ∂Cθ/∂θ.

Under A1 and A2, the empirical goodness-of-fit process Cn converges weakly to a centered limit
C = Cθ −ΘĊθ having covariance function ΓC(u, v, u′, v′) = Cov{C(u, v), C(u′, v′)} whose expression
is explicit but cumbersome. Thanks to this asymptotic result, it is then justified to base a goodness-
of-fit test on some continuous functional computed from Cn in virtue of the continous mapping
theorem (Billingsley, 1999). An omnibus statistic which has good power properties in general is
the Cramer-von Mises distance function

Vn =

∫ 1

0

∫ 1

0

{Cn(x, y)}2
dxdy. (V.3)

Note that the use of other functional distances are possible, e.g. the Kolmogorov-Smirnov type
statistics, but the latter have been found by Genest et al. (2006a) and by Genest et al. (2008) to
be generally less powerful than the Cramér-von Mises statistic. Since statistic (V.3) has no explicit
form in general, Genest and Rémillard (2008) propose to rely on the parametric bootstrap version

Vn,N =

∫ 1

0

∫ 1

0

{Cn,N(x, y)}2
dxdy,

where Cn,N =
√

n(Cn −CN ) and CN is the empirical copula computed via Equation (V.2) from an
artificial sample (X�

1,n, Y �
1,n), . . . , (X�

N,n, Y �
N,n) from Cθ̂n

. These authors show that as n, N → ∞,
the process Cn,N converges to the same limit as Cn and consequently, Vn,N has the same asymptotic
distribution as Vn.

(V.3)
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V.2.2 Moment-based goodness-of-fit statistics

Consider two real valued moments m1 and m2 of Cθ that are related to θ by one-to-one functions
r1, r2 defined on M such that m1 = r1(θ) and m2 = r2(θ). Under the null hypothesis that the
unknown copula of a population belongs to F , one has r−1

1 (m1) = r−1
2 (m2). If m̂1,n and m̂2,n

are consistent for m1 and m2 respectively, then θ̂1,n = r−1
1 (m̂1,n) and θ̂2,n = r−1

2 (m̂2,n) provide
consistent estimations of θ. In most cases of interest,

√
n(θ̂j,n − θ) is asymptotically normal with

mean zero and variance σ2
j (Cθ) under H0. A simple, asymptotically normal goodness-of-fit statistic

is then given by
Sn =

√
n
{
r−1
1 (m̂1,n) − r−1

2 (m̂2,n)
}

. (V.4)

A goodness-of-fit test then consists in rejecting the null hypothesis whenever |Sn|/σ(Cθ) exceeds
zα/2, i.e. the (1 − α/2)-th percentile of a N (0, 1) distribution, where σ2(Cθ) = limn→∞ Var(Sn).
Note that tests based on Sn may be inconsistent since it may happen that r−1

1 (m1) = r−1
2 (m2)

even if H0 is false.
The above method can be employed by considering two of the most popular measures of

association, namely Spearman’s rho and Kendall’s tau. The latter are respectively defined, in
terms of the underlying copula Cθ of the population, by

ρCθ
(θ) = 12

∫ 1

0

∫ 1

0

Cθ(x, y)dxdy − 3 and τCθ
(θ) = 4

∫ 1

0

∫ 1

0

Cθ(x, y)dCθ(x, y) − 1. (V.5)

Consistent estimators based on inversions of these rank statistics are θ̂n,ρ = ρ−1
Cθ

(ρn) and θ̂n,τ =

τ−1
Cθ

(τn), where

ρn = 1 − 6n

n2 − 1

n∑
i=1

(
R̃i,n − S̃i,n

)2

and τn = −1 +
4

n(n − 1)

∑
i
=j

1(Xi ≤ Xj , Yi ≤ Yj)

are their sample versions. Another estimator arises from the so-called pseudo maximum-likelihood
method, which is similar to the classical likelihood approach but where the normalized ranks are
used instead of the observations. The resulting estimator θ̂n,PL has been studied by Genest et al.
(1995), Shih and Louis (1995) and recently by Kim et al. (2006). Based on these three consistent
estimators, one can build three goodness-of-fit statistics of the form (V.4), namely

Sn1 =
√

n
(
θ̂n,ρ − θ̂n,τ

)
, Sn2 =

√
n
(
θ̂n,ρ − θ̂n,PL

)
and Sn3 =

√
n
(
θ̂n,τ − θ̂n,PL

)
. (V.6)

V.2.3 Shih’s goodness-of-fit test for the gamma frailty model

The dependence function associated to the bivariate gamma frailty model, also referred to as
Clayton’s copula, is given in Equation (V.B.1) to be found in Appendix V.A. Shih (1998) considered
unweighed and weighted estimations of the dependence parameter θ via Kendall’s tau τn and the
weighted rank-based statistic

θ̂n,W =

∑
i<j Δij/Wij∑

i<j(1 − Δij)/Wij
,

where Δij = 1 {(Xi − Xj)(Yi − Yj) > 0} and

Wij =

n∑
k=1

1{Xk ≤ max(Xi, Xj), Yk ≤ max(Yi, Yj)}.

Since θ̂n,τ = 2τn/(1 − τn) and θ̂n,W are both unbiased for θ under the null hypothesis that C
belongs to Clayton’s family of copulas, a version of a goodness-of-fit statistic proposed by Shih
(1998) is Sn4 =

√
n(θ̂n,τ − θ̂n,W ). One deduces from arguments to be found in Shih (1998) that

Sn4 is asymptotically normal under the null hypothesis. Unfortunately, the variance provided by

(V.4)
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Shih (1998) was found to be wrong by Genest et al. (2006c), where a corrected formula is provided.
From the work of these authors, one may deduce the asymptotic representation

Sn4 =
1√
n

n∑
i=1

{Kθ(Xi, Yi) − Lθ(Xi, Yi)} + oP(1), (V.7)

where

Kθ(x, y) = 2(θ + 2)2
{

2
(
x−θ + y−θ − 1

)−1/θ − x − y +
1

θ + 2

}
and

Lθ(x, y) = (θ + 1)(2θ + 1) log
(
x−θ + y−θ − 1

)−1/θ − (θ + 1)2 log(xy) + θ.

Genest et al. (2006c) then used (V.7) to compute the asymptotic variance of Sn4, whose complicated
expression is given by

σ2
4(Cθ) =

136θ7 + 1352θ6 + 5171θ5 + 9449θ4 + 8281θ3 + 3001θ2 + 240θ + 18

3θ2(θ + 1)2(θ + 3)2

+
8(θ + 2)4

θ2(θ + 1)2
I1(θ) −

4(θ + 1)4

θ4

∞∑
k=0

(−1)k

(k + 1 + 1/θ)
2 − 8(θ + 1)(θ + 2)

θ3
I2(θ),

where

I1(θ) =
∞∑

k=0

Γ2(1/θ)

Γ(1/θ)

k!Γ (k + 1/θ)

Γ (k + 1 + 2/θ)
and I2(θ) =

∞∑
k=0

Γ(2/θ)k!

(k + 1/θ) Γ (k + 1 + 2/θ)
.

V.3 Asymptotic behaviour under local sequences

In order to derive non-degenerate limiting distributions for a given goodness-of-fit statistic under
the sequence (Qδn)n≥1 defined in Equation (V.1), one has to ensure that Qδn is close to Q0 = Cθ

in a certain sense. One such criteria is given by van der Vaart and Wellner (1996), where it is
supposed that

lim
n→∞

∫ 1

0

∫ 1

0

{
√

n
(√

qδn(x, y) −
√

q0(x, y)
)
− δq̇0(x, y)

2
√

q0(x, y)

}2

dxdy = 0, (V.8)

for qδ being the density associated to Qδ and q̇δ = ∂qδ/∂δ. Note that condition (V.8) entails that
the sequence (Qδn)n≥1 is contiguous with respect to Q0. This is the key requirement that enables
to derive the asymptotic local representation of the goodness-of-fit statistics Vn,N and Sn1, . . . ,Sn4.
This is the subject of the remains of this section.

V.3.1 Local behaviour of some estimators of the dependence parameter

Many interesting estimators for the unknown parameter of a copula family admit the asymptotic
representation

Θn,Λ =
√

n
(
θ̂n,Λ − θ

)
=

1√
n

n∑
i=1

ΛCθ

(
R̃i,n, S̃i,n

)
+ oP(1), (V.9)

where ΛCθ
: [0, 1]2 → [0, 1] is a twice differentiable score function such that for all θ ∈ M and all

(x, y) ∈ [0, 1]2, ECθ
{ΛCθ

(X, Y)} = 0 and
∣∣Λ′′

Cθ
(x, y)

∣∣ ≤ gθ(x, y), where gθ and Λ2
Cθ

are integrable
with respect to cθ(x, y) = ∂2Cθ(x, y)/∂x∂y. These conditions ensure that Θn,Λ converges in law
to

ΘΛ = Θ′
Λ +

∫
(0,1)2

ΛCθ,10(x, y)β1(x)cθ(x, y)dxdy +

∫
(0,1)2

ΛCθ,01(x, y)β2(y)cθ(x, y)dxdy,

(V.5)
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where Θ′
Λ is the limit of n−1/2

∑n
i=1 ΛCθ

(Xi, Yi) and β1, β2 are uniform brownian bridges, i.e.
gaussian processes with covariance function Cov{βj(s), βj(t)} = min(s, t) − st, j = 1, 2, arising as
the limits of

√
n{Fn(x)− x} and

√
n{Gn(y)− y} respectively. Here, ΛCθ,10(x, y) = ∂ΛCθ

(x, y)/∂x
and ΛCθ,01(x, y) = ∂ΛCθ

(x, y)/∂y.
Among the estimators that admit representation (V.9), one has the inversion of Spearman’s

rho and the pseudo maximum-likelihood estimator explored by Genest et al. (1995) and Shih and
Louis (1995). More details will be given in Example 1 and Example 2. Another popular estimation
strategy using a statistic that is not of the form (V.9) is based on θ̂n,τ , i.e. on the inversion of
Kendall’s measure of association.

The next proposition, whose proof is deferred to Appendix V.A.1, identifies the asymptotic
distribution of Θn,Λ and Θn,τ =

√
n(θ̂n,τ − θ) under contiguous alternatives of the type (V.1).

This result is a prerequisite in order to compute the local power of moment-based goodness-of-fit
statistics described in Section V.2.2. Also, it will enable to characterize the asymptotic behaviour
of the process Cn, and consequently that of Vn,N , under (Qδn)n≥1 for several strategies that aim
to estimate θ.

Proposition 1
Assume that condition (V.8) holds for the sequence (Qδn)n≥1. Then under (Qδn)n≥1,

(i) Θn,Λ � ΘΛ + δμΛ(Cθ, D), where μΛ(Cθ, D) = ED {ΛCθ
(X, Y)} − ECθ

{ΛCθ
(X, Y)} and ΘΛ

is a normal random variable with mean 0 and variance

σ2
Λ = Var

{
ΛCθ

(X, Y ) +

∫ 1

0

∫ 1

X

ΛCθ,10(x, y)cθ(x, y) +

∫ 1

Y

∫ 1

0

ΛCθ,01(x, y)cθ(x, y)

}
;

(ii) Θn,τ � Θτ + δμτ (Cθ, D), where μτ (Cθ, D) = 4{τ ′(θ)}−1 {ED(Cθ) − ECθ
(Cθ)} and Θτ is a

normal random variable with mean 0 and variance

σ2
τ =

16

{τ ′(Cθ)}2 Var {2Cθ(X, Y ) − X − Y } .

The next two examples are applications of part (i) of Proposition 1 when the estimator is based
on an inversion of Spearman’s rho and on the pseudo maximum-likelihood estimator.

Example 1
Let ρCθ

(θ) be the population value of Spearman’s measure of association for a vector (X, Y ) with

underlying copula Cθ. Then θ̂n,ρ = ρ−1
Cθ

(ρn) is a consistent estimator for θ, where ρn is Spearman’s
rank correlation coefficient. Using a Taylor expansion of order 1, one can show that this estimator
can be written in the form (V.9) with ΛCθ

(x, y) = {ρ′Cθ
}−1{12xy − 3 − ρCθ

(θ)}, where ρ′Cθ
(θ) =

∂ρCθ
(θ)/∂θ. Thus, under the contiguous sequence (V.1), Θn,ρ =

√
n(θ̂n,ρ − θ) is asymptotically

normal with drift parameter μρ(Cθ, D) = {ρ′Cθ
(θ)}−1{ρD − ρCθ

(θ)} and variance

σ2
ρ(Cθ) =

144

{ρ′Cθ
(θ)}2

Var

{
XY +

∫ 1

0

∫ 1

X

ycθ(x, y)dxdy +

∫ 1

Y

∫ 1

0

xcθ(x, y)dxdy

}
.

Example 2
Let θ̂n,PL be the pseudo likelihood estimator. From the work of Genest et al. (1995), one has

representation (V.9) with ΛCθ
(x, y) = β−1

Cθ
�′Cθ

(x, y), where �Cθ
(x, y) = log cθ(x, y) and βCθ

=

ECθ
[{�′Cθ

(X, Y)}2], with �′Cθ
= ∂�Cθ

/∂θ. An application of Proposition 1 shows that Θn,PL =√
n(θ̂n,PL−θ) converges in law to a normal distribution with variance σ2

PL(Cθ) = β−2
Cθ

Var{�′Cθ
(X, Y )−

WCθ,1(X) − WCθ,2(Y )}, where

WCθ,1(u) =

∫ 1

u

∫ 1

0

�′Cθ
(x, y)�′Cθ,1(x, y)cθ(x, y)dxdy

(V.6)
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and

WCθ,2(u) =

∫ 1

0

∫ 1

u

�′Cθ
(x, y)�′Cθ,2(x, y)cθ(x, y)dxdy,

with �′Cθ,1(x, y) = ∂�Cθ
(x, y)/∂x and �′Cθ,2(x, y) = ∂�Cθ

(x, y)/∂y. The asymptotic mean is

μPL(Cθ , D) = β−1
Cθ

ED

{
�′Cθ

(X, Y)
}
− β−1

Cθ
ECθ

{
�′Cθ

(X, Y)
}

= β−1
Cθ

ED

{
�′Cθ

(X, Y)
}

,

since by Lebesgue’s dominated convergence theorem,

ECθ

{
�′Cθ

(X, Y)
}

=

∫ 1

0

∫ 1

0

ċθ(x, y)dxdy =
∂

∂θ

∫ 1

0

∫ 1

0

cθ(x, y)dxdy = 0.

V.3.2 Local behaviour of the goodness-of-fit statistics

The first theoretical result of this section establishes the large-sample behaviour of Cn under the
sequence (Qδn)n≥1. It is assumed that the estimator of θ is either of the form (V.9) or based on
the inversion of Kendall’s tau.

Proposition 2
Suppose condition (V.8) and Assumptions A1-A2 hold, and assume that Θn =

√
n(θ̂n−θ) converges

in law to Θ̃ = Θ + δμ(Cθ, D) under the sequence (V.1), where Θ is the limit in law of Θn under
H0. Then under (Qδn)n≥1, the empirical process Cn =

√
n(Cn − Cθ̂n

) converges weakly to

C̃ = C + δ
{
D − Cθ − μ(Cθ, D)Ċθ

}
,

where C is the weak limit of Cn under H0 and Ċθ = ∂Cθ/∂θ.

Remark 1
As one may expect, a sequence of the form Qδn = Cθ+δn yields absolutely no power for statistics
based on Cn since Qδn ∈ F in that case. Indeed, as one can deduce from computations made in
the proof of Proposition 2, condition (V.8) enounced in van der Vaart and Wellner (1996) implies
that Cn,θ converges to Cθ + δĊθ. Moreover, since Θn converges to Θ+ δ in that case,

√
n(Cθ̂n

−Cθ)

converges to (Θ + δ)Ċθ, so that Cn = Cn,θ −√
n(Cθ̂n

− Cθ) converges to C, i.e. to the same limit
as under H0.

The asymptotic local behaviour of the moment-based goodness-of-fit statistics (V.6) can eas-
ily be obtained as consequences of Proposition 1. This is the subject of Proposition 3, whose
straightforward proof is omitted.

Proposition 3
Suppose condition (V.8) holds. Then under (Qδn)n≥1,

(i) Sn1 � S1 + δ {μρ(Cθ, D) − μτ (Cθ , D)};

(ii) Sn2 � S2 + δ {μρ(Cθ, D) − μPL(Cθ, D)};

(iii) Sn3 � S3 + δ {μτ (Cθ, D) − μPL(Cθ, D)}.

This result implies that the limiting distribution of Snj , j = 1, 2, 3 under the contiguous sequence is
normal with some mean δμj(Cθ, D) and variance σ2

j (Cθ). As long as μ(Cθ, D) �= 0, a goodness-of-fit
procedure based on Snj will yield power locally.

(V.7)
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V.3.3 Shih’s statistic under contiguity

The asymptotic behaviour of Sn4 under the contiguous sequence (Qδn)n≥1 will follow from an appli-
cation of Lecam’s third lemma and the asymptotic representation (V.7). This result is summarized
in Proposition 4.

Proposition 4
Under the contiguous sequence (Qδn)n≥1, the goodness-of-fit statistic Sn4 converges in law to a

normal distribution with variance σ2
4(Cθ) and mean δη1(Cθ, D) − δη2(Cθ , D), where

η1(Cθ, D) = 4(θ + 2)2 {ED(Cθ) − ECθ
(Cθ)}

η2(Cθ, D) = (θ + 1)(θ + 2)

∫ 1

0

∫ 1

0

{d(u, v) − cθ(u, v)} log Cθ(u, v)dudv

− (θ + 1)2
∫ 1

0

∫ 1

0

{d(u, v) − cθ(u, v)} log uvdudv.

V.4 Local power comparisons

In this section, the asymptotic power of the goodness-of-fit tests based on Vn,N and Sn1, . . . ,Sn4

are investigated under alternatives of the form (V.1). Here, C and D are chosen to be in the
same family with different levels of dependence. In other words, local alternatives of the form
Qδn = (1 − δn)Cθ(x, y) + δnCθ′(x, y) are considered, where θ < θ′. It is assumed that θ is a
dependence parameter for the family {Cθ; θ ∈ M}, i.e. Cθ(x, y) ≤ Cθ′(x, y) for all (x, y) ∈ [0, 1]2.
This requirement is fulfilled for most families of copulas. The above mixing distribution can
represent a setting where the data generating process stays in the same family over time but the
dependence strength suddenly changes, c.f. regime-shifting models. Structural changes of this kind
can occur in mean-reverting processes such as those driving oil and other commodity prices, where
the dependence pattern, i.e. the copula family, remains the same over time but the strength of
this link becomes significantly stronger or weaker at some moment.

The following analyses will consider local distributions involving mixtures of Clayton, Frank,
Gumbel-Barnett and Normal copulas whose analytical expressions are given in Equations (V.B.1)–
(V.B.4) to be found in Appendix V.B.

V.4.1 Efficiency of the empirical copula process under various estima-
tion strategies

Here, the influence of the estimation strategy on the power of the Cramér-von Mises statistic is
investigated under local sequences. Here and in the sequel, Cn,N,ρ, Cn,N,τ and Cn,N,PL refer to the
empirical copula goodness-of-fit process with the estimation of θ based respectively on Spearman’s
rho, Kendall’s tau and the pseudo likelihood approach. Similarly, Vρ

n,N , Vτ
n,N and VPL

n,N are the
associated Cramér-von Mises functionals.

According to Proposition 2, the weak limits of the empirical copula goodness-of-fit processes
Cn,N,ρ, Cn,N,τ and Cn,N,PL under the contiguous sequence (Qδn)n≥1 are

C̃ρ = Cρ + δ(g − μρĊθ), C̃τ = Cτ + δ(g − μτ Ċθ) and C̃PL = CPL + δ(g − μPLĊθ),

where Cρ, Cτ and CPL are the respective limits under H0 and g(x, y) = D(x, y)−Cθ(x, y). Compu-
tations of μρ, μτ and μPL are detailed in Appendix V.B for mixtures of Clayton, Frank, Gumbel-
Barnett and Normal copulas. The results are reported in Table V.1. Generally speaking, these
drift terms are higher for Θn,ρ and Θn,PL than for Θn,τ . This indicates that the estimator based
on Kendall’s tau is more robust under perturbations of H0 of the type Qδn , which is not necessarily
a good property for goodness-of-fit testing where one wants to detect departures from H0.

There is no hope to obtain explicit representations for the asymptotic distributions of Vρ
n,N ,

Vτ
n,N and VPL

n,N , and consequently for the associated power curves. A procedure to overcome this

(V.8)
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Table V.1: Drift terms for the estimators based on Spearman’s rho, the pseudo
maximum-likelihood and Kendall’s tau under mixtures of Clayton, Frank, Gumbel-
Barnett and Normal copulas.

τCθ τD Model μρ μPL μτ Model μρ μPL μτ

0.1 0.2 0.244 0.250 0.030 0.901 0.926 0.111
0.1 0.3 0.475 0.487 0.059 1.789 1.815 0.231
0.1 0.4 0.692 0.697 0.086 2.615 2.704 0.333
0.1 0.5 Clayton 0.889 0.882 0.114 Frank 3.385 3.519 0.435
0.4 0.5 0.527 0.544 0.067 1.319 1.381 0.164
0.4 0.6 0.996 0.995 0.128 2.436 2.619 0.315
0.4 0.7 1.384 1.393 0.183 3.351 3.810 0.452
0.4 0.8 1.679 1.786 0.228 4.021 4.762 0.548

0.1 0.2 0.099 0.101 0.013 0.154 0.154 0.019
0.1 0.3 0.192 0.198 0.025 0.301 0.302 0.037
0.1 0.4 0.281 0.290 0.037 0.440 0.443 0.054
0.1 0.5 Gumbel– 0.485 0.379 0.049 Normal 0.565 0.572 0.071
0.4 0.5 Barnett 0.096 0.101 0.016 0.120 0.123 0.017
0.4 0.6 0.179 0.195 0.029 0.226 0.228 0.032
0.4 0.7 0.250 0.282 0.044 0.312 0.315 0.046
0.4 0.8 0.303 0.797 0.068 0.377 0.387 0.062

difficulty is explained next in order to compute the local power curve of the Cramér-von Mises
tests. For simplicity, only the case involving Vρ

n,N is detailed.
First note that under (Qδn)n≥1,

Vρ
n,N � Ṽρ =

∫ 1

0

∫ 1

0

{
C̃ρ(x, y)

}2

dxdy =

∫ 1

0

∫ 1

0

{Cρ(x, y) + δhρ(x, y)}2dxdy,

where hρ(x, y) = D(x, y) − Cθ(x, y) − μρ(Cθ , D)Ċθ(x, y). Hence, for large values of n and N , an
approximation is given by

Ṽρ
n,N =

∫ 1

0

∫ 1

0

{Cn,N,ρ(x, y) + δhρ(x, y)}2dxdy,

where Cn,N,ρ is the empirical copula goodness-of-fit process where θ is estimated through an inver-
sion of Spearman’s rho. One can see that Ṽρ

n,N = Vρ
n,N + 2δV1 + δ2V2, where

V1 =

∫ 1

0

∫ 1

0

hρ(x, y)Cn,N,ρ(x, y)dxdy

=
1√
n

n∑
i=1

∫ 1

R̃i,n

∫ 1

S̃i,n

hρ(x, y)dxdy −√
n

∫ 1

0

∫ 1

0

hρ(x, y)Cθ̂n,ρ
(x, y)dxdy

and

V2 =

∫ 1

0

∫ 1

0

{hρ(x, y)}2 dxdy.

In Figure V.1 and Figure V.2, the local power curves of the Cramér-von Mises test statistic
computed under the three considered estimation strategies using the above approximations with
n = 2500 and N = 2500 are reported under mixtures of Clayton, Frank, Gumbel–Barnett and
Normal copulas. The strength of the dependence of the null copula C and of the perturbation copula
D, as measured by Kendall’s tau, are (τC , τD) = (0.1, 0.5) in Figure V.1 and (τC , τD) = (0.4, 0.8)
in Figure V.2.

It is first interesting to note that surprisingly, the choice of the estimator has a significant
impact on the local power curves in almost all cases considered, except under Normal mixtures.

(V.9)
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Figure V.1: Asymptotic local power curves of the tests based on Vρ
n,N , Vτ

n,N and

VPL
n,N under mixtures of (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal

copulas with τC = 0.1 and τD = 0.5.

Under Clayton alternatives, the conclusions are the same in Figure V.1 and Figure V.2, namely
that Vτ

n,N has a significantly much larger local power than its two competitors. Overall, Vρ
n,N is the

least powerful locally. Probably due to the fact that the drift terms μτ associated to the estimation
by Kendall’s tau are small (see Table V.1), Vτ

n,N performs generally very well, especially in the case
of small level of dependence, i.e. for (τC , τD) = (0.1, 0.5). For higher degrees of dependence, VPL

n,N

is often better than Vτ
n,N and constitutes a good choice under all scenarios, except for Clayton

mixtures.

V.4.2 Comparison of the empirical copula process with the moment-
based statistics

In view of Propositions 3 and 4, the asymptotic local power curves β1, . . . , β4 of the goodness-of-fit
tests based on Sn1, . . . ,Sn4 are of the form

βj(δ, Cθ, D) = 1 − Φ

{
zα/2 −

∣∣∣∣δμj(Cθ, D)

σj(Cθ)

∣∣∣∣} + Φ

{
−zα/2 −

∣∣∣∣δμj(Cθ, D)

σj(Cθ)

∣∣∣∣} , (V.10)

where zα/2 is the (1 − α/2)-th percentile of a N (0, 1) distribution. Here, μ1 = μρ − μτ , μ2 =
μρ −μPL, μ3 = μτ −μPL and μ4 = η1 − η2. In view of equation (V.10), the local power of the test
based on Snj only depends on the absolute value of the ratio μj(Cθ, D)/σj(Cθ), i.e. the asymptotic
local efficiency. Some values of μ1, μ2 and μ3 are reported in Table V.2 under the four choices of

(V.10)
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Figure V.2: Asymptotic local power curves of the tests based on Vρ
n,N , Vτ

n,N and

VPL
n,N under mixtures of (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal

copulas with τC = 0.4 and τD = 0.8.

mixture distributions. The highest local efficiencies, i.e. the one that yields the most power locally
among the three, are identified in bold.

Table V.2 establishes a clear picture of which statistic is the best under a given scenario
of mixture distributions: for Clayton, Gumbel–Barnett and Normal mixtures, Sn1 is the most
powerful locally, while Sn3 is the best for local mixtures of Frank copulas. The test statistic Sn2 is
very poor in all cases, except when (τC , τD) = (0.4, 0.8) under Gumbel-Barnett alternatives. It is
also interesting to note that under Clayton mixtures, Sn1 performs better than Shih’s statistic Sn4,
even if the latter is specifically conceived for this particular case. To come to this conclusion, note
that |μ4|/σ4 = 0.655 when (τC , τD) = (0.1, 0.5) and |μ4|/σ4 = 0.347 when (τC , τD) = (0.4, 0.8).

Figure V.3 compares the local power curves of Sn1, Sn2 and Sn3 to the best statistic among
Vn,N,ρ, Vn,N,τ and Vn,N,PL according to the results of subsection V.4.1. Only the case (τC , τD) =
(0.4, 0.8) is considered. For the mixture of Clayton copulas, the goodness-of-fit statistic of Shih,
suitable only for this family, is also investigated.

The test statistic Sn1 exhibit high power locally in all cases, while Sn3 also performs very
well. The most surprising discovery here is the rather poor performance of the Cramér-von Mises
statistics compared to the very simple, asymptotically normal moment-based statistics. These
conclusions must however be treated with care since the nature of the alternative distributions
considered could have favored the moment-based statistics. Nevertheless, the latter deserve further
investigations under other types of alternatives. Also, multivariate extensions of Sn1, . . . ,Sn4 could
be considered as serious competitors to Vρ

n,N , Vτ
n,N and VPL

n,N , the latter being very costly in terms
of computing time.

(V.11)
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Table V.2: Asymptotic local efficiency terms for the test statistics Sn1, Sn2 and
Sn3 under mixtures of Clayton, Frank, Gumbel-Barnett and Normal copulas

Mixture Sn1 Sn2 Sn3 Mixture Sn1 Sn2 Sn3

τCθ τD model |μ1|/σ1 |μ2|/σ2 |μ3|/σ3 model |μ1|/σ1 |μ2|/σ2 |μ3|/σ3

0.1 0.2 1.627 0.006 0.227 3.329 0.065 4.269

0.1 0.3 3.163 0.013 0.442 6.566 0.067 8.298

0.1 0.4 4.608 0.009 0.632 9.617 0.230 12.420

0.l 0.5 Clayton 5.894 0.005 0.794 Frank 12.432 0.346 16.155

0.4 0.5 0.762 0.007 0.234 1.162 0.039 1.873

0.4 0.6 1.438 0.000 0.426 2.134 0.115 3.547

0.4 0.7 1.989 0.004 0.594 2.916 0.290 5.169

0.4 0.8 2.403 0.046 0.765 3.494 0.468 6.487

0.1 0.2 1.920 0.006 0.289 3.971 0.000 0.444
0.1 0.3 3.728 0.019 0.568 7.765 0.003 0.871
0.1 0.4 5.446 0.029 0.831 11.353 0.010 1.278
0.1 0.5 Gumbel– 9.732 0.338 1.084 Normal 14.529 0.023 1.646
0.4 0.5 Barnett 0.795 0.017 0.361 1.459 0.011 0.446
0.4 0.6 1.491 0.056 0.706 2.748 0.007 0.824
0.4 0.7 2.048 0.112 1.012 3.768 0.011 1.131
0.4 0.8 2.336 1.725 3.099 4.462 0.036 1.367

In bold, the most powerful statistic locally among Sn1, Sn2 and Sn3

In some cases, e.g. in panel (b) of Figure V.3, it is difficult to decide whether Sn2 performs
better than VPL

n,N , locally. A way to circumvent this problem consists in computing some measure
of asymptotic relative efficiency. This idea is developed in the next section.

V.5 Asymptotic relative efficiencies

V.5.1 A new ARE measure

For a goodness-of-fit statistic whose limiting distribution is normal with mean δμ(Cθ, D) and vari-
ance σ2(Cθ), the associated local power curve β(δ, Cθ, D) is an increasing function of μ(Cθ, D)/σ(Cθ, D)
for all fixed values of δ > 0. It thus seems natural to compare the efficiency of two such statistics
Snj and Snk via Pitman’s measure of asymptotic relative efficiency (ARE), namely

AREPitman(Snj ,Snk) =

{
μj(Cθ, D)/σj(Cθ)

μk(Cθ, D)/σk(Cθ)

}2

.

However, it is not entirely clear how to extend this measure in the case when the limiting distri-
bution of a test statistic is no longer normal, which is the case with many of the goodness-of-fit
statistics. A generalization of Pitman’s measure proposed by Genest et al. (2006b) and Genest
et al. (2007) is

ÃRE(Snj ,Snk) = lim
δ→0

βSnj(δ) − βSnj (0)

βSnk
(δ) − βSnk

(0)

in terms of the local power functions βSnj , βSnk
of two tests Snj and Snk. For most cases of

interest, however, this measure requires the derivatives of the power curves in a neighborhood of
δ = 0. Since the asymptotic local power functions of the tests based on Vn,N,ρ, Vn,N,τ and Vn,N,PL

admit no explicit representations, this causes a serious problem when trying to apply the latter
definition.

(V.12)
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Figure V.3: Asymptotic local power of the Cramér-von Mises tests and of Sn1,
Sn2, Sn3 and Sn4 under (a) Clayton, (b) Frank, (c) Gumbel-Barnett and (d) Normal
mixtures with τC = 0.4 and τD = 0.8.

Here, another generalization of AREPitman is proposed :

ARE(Snj ,Snk) =

{
lim

M→∞

∫ M

0 {1 − βSnk
(δ)} dδ∫ M

0

{
1 − βSnj(δ)

}
dδ

}2

.

The first motivation for such a definition is the possibility to estimate
∫ M

0

{
1 − βSnj (δ)

}
dδ and∫ M

0
{1 − βSnk

(δ)} dδ when accurate approximations β̂Snj and β̂Snk
are available. This is the case

for the power curves of the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N . To be specific, suppose β̂(δ)

is available at the points iM/N , i = 1, . . . , N , for sufficiently large N in order to achieve some

numerical accuracy. Upper and lower approximations of
∫ M

0

{
1 − βSnj (δ)

}
dδ are

I1 =
M

N

N∑
i=1

{
1 − β̂

(
iM

N

)}
and I2 =

M

N

N−1∑
i=0

{
1 − β̂

(
iM

N

)}
,

and the chosen approximation, provided M is selected such that β̂(M) = 1, is

I1 + I2

2
=

M

N

N−1∑
i=1

{
1 − β̂

(
iM

N

)}
+

M

N

(
1 − α

2

)
.

Another interesting feature of ARE(Snj ,Snk) is the fact that it generalizes Pitman’s notion of
asymptotic relative efficiency. To see this, let β(δ) = 1 − Φ(zα/2 − δμ) + Φ(−zα/2 − δμ) and

(V.13)
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compute∫ ∞

0

{1 − β(δ)} dδ =

∫ ∞

0

Φ
(
zα/2 − δμ

)
δδ −

∫ ∞

0

Φ
(
−zα/2 − δμ

)
dδ

=
1

μ

{∫ zα/2

−∞

Φ(x)dx −
∫ −zα/2

−∞

Φ(x)dx

}
=

1

μ

∫ zα/2

−zα/2

Φ(x)dx =
zα/2

μ
.

As a consequence, one has∫ ∞

0

{1 − βj(δ, Cθ, D)} δδ = zα/2

{
μj(Cθ, D)

σj(Cθ)

}−1

for local power functions of the form (V.10). Computations of ARE for some of the goodness-of-fit
statistics encountered in this paper are provided in the next subsection.

V.5.2 Local efficiency comparisons

In all situations considered in subsection V.4.2, the best moment-based statistic locally outperform
the best Cramér-von Mises statistic. Hence, it seems useless to compare the latter in terms of their
asymptotic relative efficiency. However, since the power curves of Vρ

n,N , Vτ
n,N and VPL

n,N are often
very close to each other, such computations could be very interesting. They are presented in Table
V.3.

Table V.3: Estimated values of limM→∞

∫ M
0 {1 − β(δ)}dδ for the goodness-of-fit

statistics Vρ
n,N , Vτ

n,N and VPL
n,N and asymptotic relative efficiencies under mixtures of

Clayton, Frank, Gumbel-Barnett and Normal copulas.

Mixture limM→∞

∫ M

0
{1 − β(δ)}dδ Asymptotic relative efficiency

model τCθ τD Vρ
n,N Vτ

n,N VPL
n,N (Vρ

n,N ,Vτ
n,N ) (Vρ

n,N ,VPL
n,N ) (Vτ

n,N ,VPL
n,N )

Clayton 0.1 0.5 12.018 2.540 12.618 0.211 1.050 4.968
0.4 0.8 23.469 8.349 26.091 0.356 1.112 3.125

Frank 0.1 0.5 17.464 2.381 17.594 0.136 1.007 7.389
0.4 0.8 29.483 27.079 8.670 0.918 0.294 0.320

Gumbel- 0.1 0.5 5.954 2.506 16.143 0.421 2.711 6.442
Barnett 0.4 0.8 30.369 9.282 5.475 0.306 0.180 0.590

Normal 0.1 0.5 3.142 2.491 3.150 0.793 1.003 1.265
0.4 0.8 8.390 8.527 8.609 1.016 1.026 1.010

These computations show, among other things, that Vτ
n,N is generally more powerful than

VPL
n,N for low dependence alternatives, i.e. close to independence. An opposite conclusion arises for

mixture of high dependence copulas, namely when (τC , τD) = (0.4, 0.8). The performance of V PL
n,N

and V ρ
n,N are quite similar for low dependence, except under Gumbel-Barnett mixtures. Overall,

V τ
n,N seems the best choice close to the independence copula, while V PL

n,N performs well under high
levels of dependence.

Looking back at panel (b) of Figure V.3, it is difficult to decide whether Sn2 performs better
than VPL

n,N . Even though the local power curve of VPL
n,N reaches 1 more quickly, the asymptotic

relative efficiency is given by ARE(VPL
n,N ,Sn2) = 0.950, which supports the choice of Sn2 over VPL

n,N

if a mixture of Frank distributions is suspected as a possible alternative.

(V.14)
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V.6 Sensitivity in small samples

This section is devoted to the sensitivity in small samples and under fixed alternatives of the
test statistics encountered in this paper, namely Vρ

n,N , Vτ
n,N,, VPL

n,N , Sn1, Sn2, Sn3 and Sn4. The
main goal is to relate the asymptotic local efficiency results of Section V.4 and Section V.5 with
empirical situations. In subsection V.6.1, the specific influence of the estimators on the power of
the Cramér-von Mises statistics is investigated. In subsection V.6.2, comparisons with the moment-
based statistics are made. These results will be paralleled with those presented in subsections V.4.1
and V.4.2 under contiguous sequences.

V.6.1 Influence of the estimators on the power of the Cramér-von Mises
statistics

It was seen in subsection V.4.1 that the asymptotic local powers of the goodness-of-fit tests based
on the empirical copula process are sensitive to the choice of the estimator of the dependence
parameter, at least under the mixture distributions considered. In this section, the ability of Vρ

n,N ,
Vτ

n,N and VPL
n,N to reject the null hypothesis is first examined under fixed alternatives and many

sample sizes. The results can be found in Tables V.4-V.7. First note that all 5% nominal levels
are maintained, keeping in mind a margin of error of the magnitude of ±1% when estimating
proportions from 10 000 replicates.

When Clayton’s family of copulas is in the null hypothesis, one can see from Table V.4 that
Vρ

n,N performs very well against all alternatives, especially in small samples, while Vτ
n,N is almost

as powerful. The latter are significantly superior to VPL
n,N under Gumbel-Barnett alternatives,

especially in small samples. The performance of VPL
n,N however surpasses that of Vρ

n,N and Vτ
n,N

under Frank and Normal alternatives, and this advantage is particularly marked for higher degrees
of dependence.

Things are much simpler in Table V.5 when testing the membership to Frank’s family, where
the three considered estimation strategies yield almost the same power for the Cramér-von Mises
statistics. For the null hypothesis of belonging to Gumbel-Barnett’s class, the statistic VPL

n,N is
remarkably better than its two competitors under Frank and Normal alternatives, especially for
large sample sizes, as one can notice from the entries in Table V.6. An opposite conclusion must
however be made under Clayton alternatives, where Vρ

n,N and Vτ
n,N are slightly better.

Finally, the most powerful statistics for testing the Normal hypothesis are Vρ
n,N and Vτ

n,N under
Clayton alternatives, while VPL

n,N is the best choice under observations that come from the Frank
copula. Here again, the performance of the latter increases as the sample size becomes larger.

In a second series of analyses, the power of the Cramér-von Mises statistics under mixture
distributions of the type Qδn = (1−δn)Cθ +δnCθ′ have been considered for samples of size n = 500.
The corresponding empirical power curves are presented in Figure V.4. In this setting, 100×δ/

√
500

% of the observations come from the distribution Cθ′ , so the power increases with δ. However, from
a certain threshold, the observed powers suddenly decreases toward the nominal level. This occurs
because Cθ′ also belongs to the family of copulas under H0. One may have expected, however,
that the powers would start to decrease at the middle point, i.e. when δ =

√
500/2 ≈ 11.2. The

observed asymmetry in all four cases is probably an indication that the goodness-of-fit tests are
better to detect discrepancies from H0 when the data come from a copula with a high level of
dependence. The fact that θ′ > θ probably explained that the middle point is skewed to the right.

As expected, the differences in power between Vρ
n,N , Vτ

n,N and VPL
n,N are less apparent in small

sample sizes than it was asymptotically (see Figure V.2 to compare). Nevertheless, the conclusions
here are very similar to the asymptotic situation, except that the performance of Vρ

n,N is not as bad
as for n → ∞ under Clayton and Gumbel-Barnett mixtures. Briefly, the choice of the estimator
doesn’t seem to have a significant influence under Gumbel-Barnett and Normal mixtures, while for
Clayton mixtures, the pseudo-likelihood estimator is not recommended. The latter is however the
best choice under Frank mixtures.

(V.15)
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Table V.4: Estimated percentage of rejection of the null hypothesis of belonging
to Clayton’s family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2

and Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel-Barnett

n τ Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3 Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3

100 0.10 5.0 4.5 4.2 3.2 3.4 6.2 22.4 20.2 12.0 2.7 11.2 6.0
0.15 5.7 5.0 5.2 3.1 4.2 7.2 38.7 36.6 24.0 2.3 18.6 11.0
0.20 6.0 5.5 5.6 2.8 4.5 6.8 55.4 53.3 38.6 1.4 27.6 19.1

250 0.10 5.1 4.6 5.1 3.9 4.9 6.1 37.7 36.1 26.6 2.4 33.8 26.6
0.15 5.3 5.1 5.0 4.0 4.9 5.9 65.4 64.6 53.2 1.7 58.2 49.9
0.20 5.1 5.3 5.1 3.1 5.1 5.9 86.2 85.5 77.7 1.1 78.0 74.5

500 0.10 5.0 5.0 4.3 3.5 5.1 5.3 57.1 54.9 46.6 1.3 64.8 59.8
0.15 5.6 5.1 4.8 4.8 4.9 5.7 86.6 86.2 79.9 1.4 90.1 88.2
0.20 5.0 5.2 5.3 3.6 5.1 5.8 97.5 97.3 95.6 1.1 98.4 98.2

1000 0.10 5.1 5.1 4.7 3.0 5.2 5.4 73.3 73.8 69.7 0.6 90.5 89.9
0.15 4.8 5.3 5.3 5.0 5.5 5.7 97.4 97.5 96.0 0.8 99.7 99.7
0.20 5.1 5.3 5.3 4.8 4.9 5.2 99.9 100 99.9 2.2 100 100

2500 0.10 4.7 4.7 6.2 4.2 4.8 5.2 90.1 89.8 90.5 0.4 99.9 99.9
0.15 4.8 4.8 5.5 4.7 4.3 4.6 99.9 99.9 99.9 0.3 100 100
0.20 4.5 5.3 5.5 5.8 5.9 5.2 100 100 100 13.0 100 100

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 12.8 11.6 8.1 3.9 7.5 3.8 12.3 11.2 6.7 3.4 5.6 3.1
0.15 20.8 19.2 13.9 4.3 11.0 4.8 20.2 18.4 11.5 3.6 8.0 3.9
0.20 31.3 29.5 23.9 5.1 17.6 9.3 29.4 26.9 17.9 3.2 11.5 6.1

250 0.10 18.8 18.3 17.8 4.7 24.0 16.4 18.6 17.3 12.7 4.0 17.4 11.4
0.15 36.0 34.8 36.5 7.3 44.0 34.2 33.0 32.3 25.5 5.3 29.4 21.1
0.20 55.7 54.6 58.3 9.3 64.7 56.5 49.7 47.8 41.2 5.0 44.3 36.1

500 0.10 28.7 27.1 32.0 5.3 49.9 42.8 25.8 24.6 20.8 3.9 35.8 29.1
0.15 54.5 52.9 61.3 10.2 81.2 75.4 48.6 46.9 43.6 7.0 61.4 53.7
0.20 77.1 76.1 84.7 14.1 95.3 93.6 69.7 68.4 66.7 7.9 81.8 78.0

1000 0.10 37.3 37.8 50.5 5.5 81.4 78.2 33.8 33.0 35.5 3.9 63.6 59.5
0.15 72.3 72.3 83.5 15.7 98.7 98.1 66.7 65.8 65.8 10.2 92.5 89.4
0.20 92.4 92.8 97.6 25.0 100 100 88.2 87.3 89.4 15.2 99.0 98.8

2500 0.10 50.2 48.5 73.3 9.0 99.6 99.6 43.4 42.4 52.4 5.8 96.1 95.9
0.15 88.9 88.6 96.5 20.5 100 100 83.5 82.2 88.0 14.0 100 100
0.20 99.1 99.2 99.9 40.4 100 100 97.5 97.8 98.6 28.7 100 100
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Table V.5: Estimated percentage of rejection of the null hypothesis of belonging
to Frank’s family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2

and Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel-Barnett

n τ Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3 Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3

100 0.10 7.1 6.4 6.4 4.0 1.1 6.5 10.5 9.6 10.0 3.0 1.0 6.5
0.15 11.3 10.2 10.4 3.6 1.3 8.3 15.2 14.2 14.6 2.4 1.0 8.5
0.20 16.3 14.8 15.5 2.6 1.1 10.1 17.3 17.0 17.3 1.8 1.3 11.0

250 0.10 12.7 12.0 12.9 3.2 1.6 9.4 12.6 12.8 12.9 2.1 0.8 9.6
0.15 24.8 24.8 26.0 2.3 1.4 15.1 19.7 19.6 20.3 0.9 1.6 15.4
0.20 43.4 43.5 43.7 1.4 2.3 18.9 28.3 29.6 29.6 0.5 3.7 20.3

500 0.10 22.6 22.1 21.7 2.8 1.1 15.9 16.5 16.2 16.0 1.0 1.0 16.1
0.15 47.3 47.1 47.0 1.8 2.4 25.9 28.3 28.6 28.8 0.5 5.1 27.1
0.20 73.2 74.2 73.7 1.0 6.5 31.8 42.8 45.7 45.1 1.0 14.4 34.1

1000 0.10 36.4 39.3 38.5 2.2 1.5 26.8 21.4 22.9 22.7 0.4 3.6 29.0
0.15 72.5 73.1 72.1 1.3 8.4 41.7 41.1 42.8 41.9 0.9 19.2 45.8
0.20 92.8 92.9 93.2 1.3 18.0 47.9 60.6 62.1 63.9 8.0 37.1 54.7

2500 0.10 53.2 52.2 51.9 1.4 8.5 51.1 26.0 26.2 26.5 1.0 26.3 59.5
0.15 90.6 91.1 91.5 1.1 32.3 74.8 53.6 56.0 56.9 19.8 66.0 82.4
0.20 99.6 99.5 99.4 10.9 54.1 79.9 79.9 79.7 81.2 65.9 85.6 88.7

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 6.0 5.6 5.5 4.6 2.3 4.3 6.0 5.1 5.4 3.8 2.1 4.7
0.15 6.0 5.7 5.6 4.5 2.8 4.5 6.4 5.7 5.7 3.6 2.5 5.0
0.20 5.4 5.4 5.2 4.5 3.3 4.7 6.7 6.4 6.7 3.3 2.8 5.9

250 0.10 4.8 4.9 4.9 4.2 3.1 4.5 6.2 5.6 6.0 3.3 3.2 5.3
0.15 4.8 4.7 4.7 3.9 3.4 4.6 6.6 6.0 6.3 2.8 3.5 6.6
0.20 4.5 5.1 4.8 4.2 3.6 4.7 8.3 7.7 7.9 2.0 3.0 7.8

500 0.10 4.6 4.6 4.5 3.9 4.1 4.6 6.2 5.6 5.4 2.7 3.7 6.6
0.15 4.7 4.9 4.6 4.5 4.2 5.2 8.0 7.5 7.6 2.2 4.3 8.1
0.20 5.0 5.3 5.1 4.7 4.4 5.1 10.8 11.4 10.1 1.6 4.1 8.6

1000 0.10 4.3 5.9 5.1 4.7 4.7 5.3 7.3 7.6 6.8 2.5 4.1 8.2
0.15 5.4 5.7 5.1 5.0 5.0 5.1 9.8 10.3 9.2 1.6 3.9 8.9
0.20 4.8 5.1 5.1 4.7 4.9 4.7 14.7 14.3 13.8 1.0 3.5 8.8

2500 0.10 5.3 5.1 4.3 4.6 4.6 4.4 7.6 7.4 6.8 1.7 4.5 9.0
0.15 5.0 5.5 5.0 4.8 5.1 5.7 10.9 11.3 11.2 1.2 4.8 11.2
0.20 5.4 5.0 5.3 4.2 4.7 4.5 17.2 16.2 17.3 0.6 4.0 9.5
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Table V.6: Estimated percentage of rejection of the null hypothesis of belonging
to Gumbel-Barnett’s family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N ,
Sn1, Sn2 and Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel–Barnett

n τ Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3 Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3

100 0.10 9.3 7.9 5.4 6.2 16.5 5.8 3.6 3.7 4.9 5.7 5.9 7.0
0.15 18.8 16.8 12.1 7.6 22.4 7.2 4.7 4.3 5.2 5.6 5.1 6.3
0.20 31.5 29.9 22.2 7.8 26.7 9.6 4.9 4.7 5.3 5.3 4.4 4.8

250 0.10 26.8 25.1 20.7 8.4 36.3 24.2 4.6 4.5 5.4 5.5 5.8 5.9
0.15 53.9 52.4 45.7 9.4 53.1 38.4 4.8 4.9 4.9 4.9 5.0 4.8
0.20 78.9 77.5 70.6 10.4 67.9 55.1 5.2 5.0 5.0 5.1 4.7 4.6

500 0.10 48.8 48.0 41.7 9.9 59.8 51.8 4.7 5.1 4.8 4.8 4.9 4.8
0.15 83.2 83.0 78.6 12.4 83.8 78.1 5.1 5.0 5.6 4.1 5.0 4.7
0.20 96.9 96.8 95.6 13.0 94.2 92.3 4.9 4.4 4.7 4.4 5.1 4.9

1000 0.10 73.5 72.4 69.1 13.6 88.8 85.9 5.0 4.8 5.6 4.8 4.9 4.8
0.15 97.5 97.0 96.7 19.3 98.9 98.7 5.1 4.9 5.3 4.5 4.8 5.1
0.20 100 100 99.9 22.5 99.9 99.9 5.3 4.9 5.3 4.6 5.0 4.8

2500 0.10 92.6 91.6 90.4 16.3 99.9 99.9 5.8 4.9 5.0 3.5 5.6 5.4
0.15 99.9 99.9 99.9 35.0 100 100 5.6 5.2 5.6 4.4 5.2 4.9
0.20 100 100 100 41.7 100 100 5.5 5.0 5.3 5.2 5.1 5.5

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 4.2 3.8 3.2 7.7 13.2 4.7 4.0 3.6 3.0 7.2 10.3 4.1
0.15 5.4 5.2 5.1 9.7 16.4 4.6 4.9 4.3 3.8 8.5 11.9 3.7
0.20 7.3 7.3 7.1 12.9 20.1 4.8 5.6 5.0 4.4 9.5 12.2 3.0

250 0.10 7.2 7.4 10.1 10.2 27.7 16.5 6.4 6.3 6.6 9.5 18.4 10.7
0.15 12.8 13.0 18.1 15.3 42.0 26.0 10.4 9.8 9.8 11.9 25.3 13.4
0.20 18.2 18.4 27.2 22.1 55.8 38.8 15.2 13.7 13.6 16.1 32.1 17.9

500 0.10 12.4 12.9 21.4 14.4 48.7 38.8 10.3 10.2 12.0 12.6 31.4 22.4
0.15 22.2 23.1 37.5 24.1 73.3 63.6 18.3 16.8 19.4 18.5 47.3 35.2
0.20 36.2 35.4 56.1 36.5 89.9 84.4 26.4 23.9 28.6 27.7 62.7 49.7

1000 0.10 18.7 19.2 36.8 19.5 79.6 74.5 14.9 14.2 20.7 16.9 57.4 50.1
0.15 37.0 36.1 62.3 38.8 97.0 95.7 28.1 25.6 35.5 32.3 79.8 73.5
0.20 56.9 57.1 81.9 58.3 99.7 99.6 41.0 40.7 51.6 50.3 91.1 86.3

2500 0.10 28.4 25.5 54.8 25.8 99.6 99.5 23.1 20.3 31.8 21.6 94.3 92.5
0.15 54.7 55.1 81.4 65.9 100 100 39.8 40.6 54.8 62.1 99.4 99.2
0.20 79.8 79.5 95.2 88.0 100 100 62.6 60.5 72.8 85.1 100 100
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Table V.7: Estimated percentage of rejection of the null hypothesis of belonging
to the Normal family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1,
Sn2 and Sn3 under fixed copula alternatives.

H1: Clayton H1: Gumbel–Barnett

n τ Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3 Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3

100 0.10 4.8 4.4 4.5 4.9 5.0 6.2 7.1 6.8 7.0 4.1 5.4 6.7
0.15 7.7 7.5 7.7 4.3 3.9 6.0 10.5 9.6 9.6 2.9 5.1 6.9
0.20 12.3 12.2 11.4 4.3 4.2 5.9 13.9 13.5 13.5 2.4 5.1 6.9

250 0.10 10.5 9.6 9.5 5.0 4.2 6.8 10.3 9.1 9.7 2.8 5.4 8.3
0.15 21.7 21.4 19.6 4.5 4.5 7.3 15.5 15.6 14.6 2.0 5.5 8.2
0.20 36.6 37.4 32.9 3.2 3.9 6.5 21.5 21.4 19.7 1.2 5.3 8.0

500 0.10 19.7 20.5 16.9 4.8 5.5 8.3 14.1 13.7 12.8 2.1 6.6 9.6
0.15 41.3 42.3 36.7 3.5 5.8 8.7 22.6 22.8 19.8 0.8 7.2 9.5
0.20 65.1 65.4 58.9 2.6 5.3 7.2 32.9 32.8 28.8 1.6 6.6 8.3

1000 0.10 33.7 31.8 28.2 4.6 8.0 10.5 18.6 16.8 15.9 1.1 9.5 11.7
0.15 64.3 64.2 59.1 2.7 10.4 12.7 31.3 30.2 27.7 1.7 11.5 12.1
0.20 87.8 88.2 84.2 2.6 9.8 11.1 46.0 48.4 43.4 10.2 10.9 10.3

2500 0.10 43.2 45.1 41.9 3.0 15.3 17.8 18.1 19.7 18.7 1.6 18.4 18.4
0.15 83.1 85.1 82.1 3.3 21.9 23.2 37.9 41.6 37.8 27.0 21.8 18.3
0.20 98.6 98.5 98.0 11.2 25.8 24.9 61.9 62.2 59.0 67.0 26.7 18.4

H1: Frank H1: Normal
n τ Vρ

n,N Vτ
n,N VPL

n,N Sn1 Sn2 Sn3 Vρ
n,N Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 4.1 4.0 4.3 5.2 11.7 7.4 4.5 4.1 4.1 4.9 6.0 5.1
0.15 4.5 4.4 5.1 5.9 15.6 10.0 4.8 4.7 4.4 4.9 5.6 4.7
0.20 5.9 6.1 7.3 7.3 20.9 14.7 4.7 4.7 5.0 5.3 6.3 5.4

250 0.10 5.0 5.0 5.8 6.1 15.9 11.2 4.6 4.1 4.2 5.2 5.2 5.2
0.15 6.3 6.7 9.7 7.2 25.6 19.6 4.8 4.9 5.1 5.1 5.3 5.3
0.20 7.3 7.8 12.7 9.4 35.3 30.2 4.5 4.8 4.6 4.9 5.0 5.4

500 0.10 6.1 6.6 8.1 6.8 22.7 18.2 5.0 5.0 4.5 4.9 4.7 5.4
0.15 7.1 8.2 13.2 8.8 36.9 31.5 5.2 5.4 4.7 5.1 5.2 5.6
0.20 9.5 11.1 20.1 11.1 55.2 51.2 4.9 4.9 4.6 5.2 4.9 4.9

1000 0.10 7.5 7.1 11.2 8.4 34.9 30.0 6.2 5.2 5.0 5.5 5.3 5.1
0.15 8.7 9.5 19.5 11.0 59.8 55.3 5.5 5.1 4.9 5.4 4.8 4.6
0.20 13.2 14.7 31.5 13.8 82.2 80.4 5.0 5.1 5.4 4.5 5.1 5.1

2500 0.10 6.4 7.2 14.1 9.8 63.7 60.7 4.3 5.0 4.9 4.5 4.8 4.8
0.15 10.0 11.7 26.7 14.5 91.7 90.5 4.4 5.2 5.1 5.4 4.8 4.7
0.20 17.7 18.1 45.1 17.0 99.3 99.4 5.2 5.1 5.3 5.0 5.3 5.7
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Figure V.4: Power curves for the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N under (a)

Clayton, (b) Frank, (c) Gumbel-Barnett and (d) Normal mixtures with (τC , τd) =
(0.4, 0.8), n = 500 and N = 2500.

V.6.2 Power of the Cramér-von Mises statistics compared to the moment-
based statistics

It was seen in subsection V.6.1 that the test statistic Vρ
n,N was a good choice for small sample sizes

when testing the goodness-of-fit under the hypothesis of belonging to the Clayton family. The
ability to reject H0 in that case is almost as good for tests based on Sn2 and Sn3, with a slight
advantage to Sn2. The power of the latter even becomes larger than that of Vρ

n,N when n ≥ 500

and is often better than the best Cramér-von Mises statistic in large samples, namely VPL
n,N . Note

the poor performance of Sn1 in all cases considered.
When testing the hypothesis of belonging to the Frank family, Sn1 and Sn2 are bad choices.

However, Sn3 is sometimes comparable with the Cramér-von Mises statistics when the sample size
is large, especially under Gumbel-Barnett alternatives.

The null hypothesis of a Gumbel-Barnett family provides an example of a very powerful
moment-based statistic. Here, Sn2 is more powerful than the best Cramér-von Mises statistic,
namely Vρ

n,N under Clayton and VPL
n,N under Frank and Normal copulas. Another example is

given when testing the hypothesis of belonging to the Normal family against Frank alternatives,
where Sn2 and Sn3 are clearly the most powerful. The latter are unfortunately inefficient to detect
Clayton and Gumbel-Barnett dependence structures.

A final analysis have been made to compare the power of the tests under Qδn = (1 − δn)Cθ +
δnCθ′ . The results are to be found in Figure V.5. Here, the ordering in the power curves are often
quite different to the ones encountered in Figure V.3 in the asymptotic situation. An explanation

(V.20)
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probably lies in the fact that the moment-based statistics are especially good in very large samples,
and the result is that the latter outclass the Cramér-von Mises statistics when n → ∞. This
domination is weaker in moderate sample sizes. This is particularly evident under Clayton mixtures
where the best Cramér-von Mises statistic outperforms all moment-based statistics. Note here
the very poor performance of Sn1, in contrast to the extremely good performance of the same
statistic when n → ∞. Under Frank mixtures the moment-based statistics perform very well even
for moderate sample sizes, where they outperform the best Cramér-von Mises statistic. Under
Gumbel-Barnett mixtures, Sn1 is clearly the best statistic while under Normal mixtures, Sn3 is
the best and Sn1 provides a very poor performance.
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Figure V.5: Power of the tests based on Vn,N , Sn1, Sn2, Sn3 and Sn4 when n = 500
under (a) Clayton, (b) Frank, (c) Gumbel-Barnett and (d) Normal mixtures with
τC = 0.4 and τD = 0.8

V.7 Discussion

In this paper, the local power curves of tests based on Cramér-von Mises distances of the empirical
copula goddness-of-fit process have been investigated and compared to that of moment-based
statistics involving Spearman’s rho, Kendall’s tau and the pseudo-maximum likelihood estimator.
Many discoveries have been made, in particular that the estimation strategy can have a significant
impact on the power of the Cramér-von Mises statistics, and that some of the moment-based
statistics provide very powerful tests under many distributional scenarios. Also, it seems that
the ability of the Cramér-von Mises statistics to detect departures from H0 is better under fixed
alternatives rather than under mixtures, while an opposite conclusion can be expressed for the
moment-based statistics.

(V.21)
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In future works, these kind of investigations could also be accomplished for other popular
goodness-of-fit tests like those proposed by Scaillet (2006), Huard et al. (2006) and Genest et al.
(2006a). The latter authors based their tests on Kendall’s process Kn(t) =

√
n{Kn(t) − Kθ̂n

(t)},
where Kθ(t) = P{Cθ(X, Y ) ≤ t}, with (X, Y ) ∼ Cθ, is the bivariate probability integral trans-
formation of Cθ and Kn is a fully nonparametric estimator of Kθ. Suitable adaptations of
the arguments to be found in Ghoudi and Rémillard (1998) should enable to establish that
Kn � K + δ(L̇0 − μK̇θ) under alternatives of the type Qδn , where K is the weak limit of Kn

under H0, Lδ is the probability integral transformation of Qδ and μ is the drift term associated to
the limit of Θn =

√
n(θ̂n − θ) identified in Proposition 1.

It could also be interesting to exploit the idea of moment-based statistics to test the fit to
families of multivariate copulas. For example, possible estimators of a univariate parameter θ are
those based on inversions of the multivariate extensions of Spearman’s rho described by Schmid
and Schmidt (2007), namely

ρn,� = ξ(d)

{
2d

∫
(0,1)d

Cn(u)du − 1

}
and ρn,�� = ξ(d)

{
2d

∫
(0,1)d

C̄n(u)du − 1

}
,

where ξ(d) = (d + 1)(2d − d− 1)−1, Cn is the multivariate empirical copula and C̄n is the survival
version of Cn. Then, the local behavior of the goodness-of-fit statistic

Sn =
√

n
{
ρ−1

� (ρn,�) − ρ−1
�� (ρn,��)

}
,

where ρ� and ρ�� are the population versions of ρn,� and ρn,��, will be a consequence of that of
Cn,θ that can be deduced from the proof of Proposition 2.

It may be noted that the form of the alternative hypothesis (V.1) is not the only one under
which asymptotic power curves could be derived. Another possibility is given by

Q�
δ(x, y) = ψ−1

δ [C {ψδ(x), ψδ(y)}] ,

where ψδ must satisfy some conditions to ensure that Q�
δ is a copula and the perturbation function

ψδ is chosen such that ψ0(t) = t. Then, by arguments similar to that in the proof of Proposition
2, it would be possible to establish that Cn,θ � Cθ + δQ̇�

0, where

Q̇�
0(x, y) = C10(x, y)ψ̇0(x) + C01(x, y)ψ̇0(y) − ψ̇0 {C(x, y)} .

Acknowledgements: Partial funding in support of this work was provided by the Norwe-
gian Research Council (grant number 154079/420) and by the Natural Sciences and Engineering
Research Council of Canada.

V.A Proofs

V.A.1 Proof of Proposition 1

Assumption (V.8) enables to deduce, from Lemma 3.10.11 of van der Vaart and Wellner (1996),
that the log-likelihood ratio of Qδn with respect to Q0 has the asymptotic representation

Ln =
δ√
n

n∑
i=1

{
d(Xi, Yi) − cθ(Xi, Yi)

cθ(Xi, Yi)

}
− δ2

2n

n∑
i=1

{
d(Xi, Yi) − cθ(Xi, Yi)

cθ(Xi, Yi)

}2

+ oP(1).

The proofs for (i) and (ii) are achieved in separate steps.

(i) From the asymptotic representation (V.9), it follows that

Θn,Λ = Θ′
n,Λ +

1

n

n∑
i=1

ΛCθ,10(Xi, Yi)βn1(Xi) +
1

n

n∑
i=1

ΛCθ,01(Xi, Yi)βn2(yi) + oP(1),
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where βn1(x) =
√

n{Fn(x) − x} and βn2(y) =
√

n{Gn(y) − y}. From Slutsky’s lemma, the
bivariate central limit theorem and arguments that one can find in Ghoudi and Rémillard
(1998), the vector (Θn,Λ, Ln) converges to a bivariate normal distribution with mean vector
and covariance matrix

μ =

(
0,

−δ2σ2(L)

2

)
and Σ =

(
σ2

Λ(Cθ) δμΛ(Cθ, D)
δμΛ(Cθ, D) δ2σ2

Λ(Qδ)

)
,

where σ2(L) = VarCθ
{d(X, Y )/cθ(X, Y )}. One may then conclude, in view of Lecam’s third

lemma, that Θn,Λ is asymptotically normal with mean δμΛ(Cθ, D) and variance σ2
Λ(Cθ)

under the contiguous sequence (Qδn)n≥1.

(ii) From Hájek’s projection method (Hájek and Sidák, 1967), one deduces the large-sample
representation

Θn,τ =
4

τ ′
Cθ

(θ)

1√
n

n∑
i=1

{
2Cθ(Xi, Yi) − Xi − Yi +

1 − τCθ
(θ)

2

}
+ oP(1).

Hence, the vector (Θn, Ln) converges to a bivariate normal distribution with mean vector
and covariance matrix

μ =

(
0,

−δ2σ2(L)

2

)
and Σ =

(
σ2

τ δμτ (θ)
δμτ (θ) δ2σ2

τ (Qδ)

)
,

from which it follows that Θn,τ is asymptotically N (δμτ (θ), σ2
τ ) under (Qδn)n≥1.

V.A.2 Proof of Proposition 2

Let (X
(n)
1 , Y

(n)
1 ), . . . , (X

(n)
n , Y

(n)
n ) be a random sample from Qδn . Write C(n)

n = C(n)
n,θ −B(n)

n , where

C(n)
n,θ =

√
n(C

(n)
n −Cθ) and B(n)

n =
√

n(C
θ̂
(n)
n

−Cθ). Here, θ̂
(n)
n is the estimator based on the sample

from Qδn and

C(n)
n (x, y) = H(n)

n

{(
F (n)

n

)−1

(x),
(
G(n)

n

)−1

(y)

}
,

where

H(n)
n (s, t) =

1

n

n∑
i=1

1

(
X

(n)
i ≤ s, Y

(n)
i ≤ t

)
,

F
(n)
n (s) = H

(n)
n (s, 1) and G

(n)
n (t) = H

(n)
n (1, t). From van der Vaart and Wellner (1996), condition

(V.8) implies that IH
(n)
n (s, t) =

√
n(H

(n)
n − Cθ)� IH + δ(D − Cθ). In particular,

β
(n)
1,n(x) =

√
n{F (n)

n (x) − x} = IH(n)
n (x, 1)� IH(x, 1)

and
β

(n)
2,n(y) =

√
n{G(n)

n (y) − y} = IH(n)
n (1, y)� IH(1, y)

since D(x, 1)−Cθ(x, 1) = D(1, y)−Cθ(1, y) = 0. From Chapter 3 in Shorack and Wellner (1986),
both

sup
0≤x≤1

∣∣∣F (n)
n (x) − x

∣∣∣ = sup
0≤x≤1

∣∣∣∣(F (n)
n

)−1

(x) − x

∣∣∣∣
and

sup
0≤y≤1

∣∣∣G(n)
n (y) − y

∣∣∣ = sup
0≤y≤1

∣∣∣∣(G(n)
n

)−1

(y) − y

∣∣∣∣
converge in probability to zero, so that

√
n

{(
F (n)

n

)−1

− I

}
� −IH(·, 1) and

√
n

{(
G(n)

n

)−1

− I

}
� −IH(1, ·).

(V.23)



122 Paper V. Local sensitivity analysis of GoF tests for copulas

Hence, since one can write

C(n)
n,θ(x, y) = IH(n)

n

{(
F (n)

n

)−1

(x),
(
G(n)

n

)−1

(y)

}
+

√
n

{
Cθ

((
F (n)

n

)−1

(x),
(
G(n)

n

)−1

(y)

)
− Cθ(x, y)

}
= IH(n)

n

{(
F (n)

n

)−1

(x),
(
G(n)

n

)−1

(y)

}
+ Cθ,10(x, y)

√
n{(F (n)

n )−1(x) − x}

+ Cθ,01(x, y)
√

n{(G(n)
n )−1(y) − y} + oP(1),

one deduces that C(n)
n,θ converges weakly to Cθ + δ(D − Cθ), where Cθ = IH − Cθ,10IH(·, 1) −

Cθ,01IH(1, ·) is the limit identified, e.g. by Gänssler and Stute (1987) and Tsukahara (2005) under
the null hypothesis. The second part of Assumption A2 and the mean-value theorem enable to
establish that B(n)

n converges to Θ̃Ċθ = ΘĊθ+μ(Cθ, D)Ċθ, while the joint consistency of (C(n)
n,θ ,B(n)

n )

to (Cθ + δ(D − Cθ), ΘĊθ + μ(Cθ, D)Ċθ) rises from Assumption A1.

V.B Computation of the drift terms

In the case of Clayton, Frank and Gumbel-Barnett copulas, the value of Spearman’s rho cannot
be expressed explicitly in terms of the dependence parameter, and hence the population value of
formula (V.5) must be estimated through numerical methods. Such is also the case for

ρ′Cθ
(θ) = 12

∫ 1

0

∫ 1

0

Ċθ(x, y)dxdy, ED {Cθ(X, Y )} =

∫ 1

0

∫ 1

0

Cθ(x, y)d(x, y)dxdy,

βCθ
=

∫ 1

0

∫ 1

0

{ċθ(x, y)}2

cθ(x, y)
dxdy and ED

{
�′Cθ

(X, Y )
}

=

∫ 1

0

∫ 1

0

ċθ(x, y)

cθ(x, y)
d(x, y)dxdy,

where cθ(x, y) = ∂2Cθ(x, y)/∂x∂y, ċθ(x, y) = ∂cθ(x, y)/∂θ and Ċθ(x, y) = ∂Cθ(x, y)/∂θ. Note that
for Archimedean copulas, i.e. dependence models of the form Cθ(x, y) = ϕ−1

θ {ϕθ(x) + ϕθ(y)}, one
can show that

Ċθ(x, y) =
ϕ̇θ(x) + ϕ̇θ(y) − ϕ̇θ {C(x, y)}

ϕ′
θ {Cθ(x, y)} ,

where ϕ̇θ(x) = ∂ϕθ(x)/∂θ and ϕ′
θ(x) = ∂ϕθ(x)/∂x. The Clayton, Frank and Gumbel-Barnett

copulas are member of this important class of models.

V.B.1 The Clayton family

The copulas in this class and their associated densities are

CCL
θ (x, y) =

(
x−θ + y−θ − 1

)−1/θ
and cCL

θ (x, y) = (θ + 1) (xy)
−θ−1 (

x−θ + y−θ − 1
)−1/θ−2

,

where θ > −1. The associated value of Kendall’s tau is τCCL
θ

(θ) = θ/(θ + 2), from which one

deduces easily that ECθ
(Cθ) = (θ + 1)/2 and τ ′

CCL
θ

(θ) = 2/(θ + 2)2. Further,

Ċθ(x, y) =
Cθ(x, y)

θ

{
x−θ log x + y−θ log y

x−θ + y−θ − 1
− log Cθ(x, y)

}
.

V.B.2 The Frank family

Frank’s copula is given by

CF
θ (x, y) = −1

θ
ln

{
1 −

(
1 − e−θx

) (
1 − e−θy

)
1 − e−θ

}
,

(V.24)
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where θ ∈ R \ {0}. As reported in Frees and Valdez (1998), Spearman’s rho and Kendall’s tau in
this family are expressed by

ρCF
θ
(θ) = 1 +

12

θ2

∫ θ

0

t(2t − θ)

et − 1
dt and τCF

θ
(θ) = 1 − 4

θ
+

4

θ2

∫ θ

0

t

et − 1
dt.

Hence, one deduces

ρ′CF
θ
(θ) =

12

θ (eθ − 1)
− 24

θ4

∫ θ

0

t(3t − θ)

et − 1
dt

and

τ ′
CF

θ
(θ) =

4

θ2
+

4

θ (eθ − 1)
− 8

θ3

∫ θ

0

t

et − 1
dt.

The other necessary computations, however, must be accomplished numerically.

V.B.3 The Gumbel-Barnett family

The analytical form of this extreme-value copula (Ghoudi and Rémillard, 1998) is

CGB
θ (x, y) = exp

{
−

(
|log x|1/(1−θ) + |log y|1/(1−θ)

)1−θ
}

,

where 0 ≤ θ ≤ 1. Computations of the drift terms in this class of models are difficult and must be
done numerically. The only explicit expressions are for Kendall’s tau and its derivative, namely
τCGB

θ
(θ) = θ and τ ′

CGB
θ

(θ) = 1.

V.B.4 The Normal family

The Normal copula, which arises as the dependence function associated to the classical normal
model, is defined by

CN
θ (x, y) =

∫ Φ−1(x)

−∞

∫ Φ−1(y)

−∞

hθ(s, t)dsdt,

where

hθ(s, t) =

(
1 − θ2

)−1/2

2π
exp

{
− 1

2(1 − θ2)

(
s2 + t2 − 2θst

)}
is the standard bivariate normal density with correlation coefficient θ. Despite the implicit form
of CN

θ involving the percentile function of a standard univariate normal distribution, there exists
explicit relationships between the dependence parameter θ and Kendall and Spearman measures
of association. Explicitly,

τCθ
(θ) =

2

π
sin−1(θ) and ρCθ

(θ) =
6

π
sin−1

(
θ

2

)
,

from which it follows easily that

ECθ
(Cθ) =

2 sin−1(θ) + π

4π
, τ ′

Cθ
(θ) =

2

π
√

1 − θ2
and ρ′Cθ

(θ) =
6

π
√

4 − θ2
.

Hence, if D ≡ CN
θD

, i.e. if one considers a mixture of Normal copulas, then

μρ(Cθ, D) =
sin−1(θD/2) − sin−1(θ/2)√

4 − θ2
.

Also, the density associated to CN
θ is

cN
θ (x, y) = hθ

{
Φ−1(x), Φ−1(y)

} (
Φ−1

)′
(x)

(
Φ−1

)′
(y),
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and it is possible to establish that

�′CN
θ
(x, y) =

ċN
θ (x, y)

cN
θ (x, y)

=
θ(1 − θ2) − θ(s2 + t2) + (θ2 + 1)st

(1 − θ2)2

∣∣∣∣
s=Φ−1(x), t=Φ−1(y)

.

This enables to compute

ED

{
�′CN

θ
(X, Y )

}
=

∫ 1

0

∫ 1

0

�′CN
θ
(x, y)cN

θD
(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

{
θ(1 − θ2) − θ(s2 + t2) + (θ2 + 1)st

(1 − θ2)2

}
hθD (s, t)dsdt

= EθD

{
θ(1 − θ2) − θ(S2 + T 2) + (θ2 + 1)ST

(1 − θ2)2

}
,

where (S, T ) follows a bivariate normal distribution with means 0, variances 1 and correlation
coefficient θD. Here, EθD denotes expectation with respect to hθD . Thus, noting that EθD(S2) =
EθD(T 2) = 1 and EθD(ST ) = θD, straightforward computations yield

ED

{
�′CN

θ
(X, Y )

}
=

(θ2 + 1)(θD − θ)

(1 − θ2)2
.

Long but similar computations enable to obtain βCθ
= θ2 + 1 and hence

μPL(Cθ, D) =
θD − θ

(1 − θ2)2
.

(V.26)
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VI.1 Introduction

A copula is a multivariate distribution function with standard uniform marginal distributions.
While the literature on copulae is substantial, most of the research is still limited to the bivariate
case. Building higher-dimensional copulae is a natural next step, however, this is not an easy task.
Apart from the multivariate Gaussian and Student copulae, the set of higher-dimensional copulae
proposed in the literature is rather limited.

The Archimedean copula family (see e.g. Joe (1997) for a review) is a class that has at-
tracted particular interest due to numerous properties which make them simple to analyse. The
most common multivariate extension, the exchangeable multivariate Archimedean copula (EAC),
is extremely restrictive, allowing the specification of only one generator, regardless of dimension.
There have been some attempts at constructing more flexible multivariate Archimedean copula
extensions, see e.g. Joe (1997); Nelsen (1999); Embrechts et al. (2003); Whelan (2004); Morillas
(2005); Savu and Trede (2006). In this paper we discuss one group of such extensions, the nested
Archimedean constructions (NACs). For the d-dimensional case, all NACs allow for the modelling
of up to d − 1 bivariate Archimedean copulae.

For a d-dimensional problem there are in general d(d− 1)/2 parings of variables. Hence, while
the NACs constitute a huge improvement compared to the EAC, they are still not rich enough to
model all possible mutual dependencies amongst the d variates. An even more flexible structure,
here denoted the pair-copula construction (PCC) allows for the free specification of d(d − 1)/2
copulae. This structure was originally proposed by Joe (1996), and later discussed in detail by
Bedford and Cooke (2001, 2002), Kurowicka and Cooke (2006) (simulation) and Aas et al. (2007)
(inference). Similar to the NACs, the PCC is hierarchical in nature. The modelling scheme is
based on a decomposition of a multivariate density into a cascade of bivariate copulae. In contrast
to the NACs, the PCC is not restricted to Archimedean copulae. The bivariate copulae may be
from any family and several families may well be mixed in one PCC.

This paper has several contributions. In Section VI.2 we compare the two ways of constructing
higher dimensional dependency structures, the NACs and the PCCs. We examine properties and
estimation- and simulation techniques, focusing on the relative strengths and weaknesses of the
different constructions. In Section VI.3 we apply the NAC and the PCC to two four-dimensional
data sets; precipitation values and equity returns. We examine the goodness-of-fit and validate the
PCC out-of-sample with respect to one day value at risk (VaR) for the equity portfolio. Finally,
Section VI.4 provides some summarizing comments and conclusions.

VI.2 Constructions of higher dimensional dependence

VI.2.1 The nested Archimedean constructions (NACs)

The most common multivariate Archimedean copula, the exchangeable Archimedean copula (EAC),
is extremely restrictive, allowing the specification of only one generator, regardless of dimension.
Hence, all k-dimensional marginal distributions (k < d) are identical. For several applications, one
would like to have multivariate copulae which allows for more flexibility. In this section, we review
one group of such extensions, the nested Archimedean constructions (NACs). We first review two
simple special cases, the FNAC and the PNAC, in Sections VI.2.1 and VI.2.1, and then we turn to
the general case in Section VI.2.1. However, before reviewing NACs, we give a short description
of the EAC in Section VI.2.1, since this structure serves as a baseline.

The exchangeable multivariate Archimedean copula (EAC)

The most common way of defining a multivariate Archimedean copula is the EAC, defined as

C(u1, u2, . . . , ud) = ϕ−1 {ϕ(u1) + . . . + ϕ(ud)} , (VI.1)

where the function ϕ is a decreasing function known as the generator of the copula and ϕ−1 denotes
its inverse (see e.g. Nelsen (1999)). Here, we assume that the generator has only one parameter,

(VI.2)
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θ. There are however cases in which the generator have more parameters, see e.g. Joe (1997). For
C(u1, u2, . . . , ud) to be a valid d-dimensional Archimedean copula, ϕ−1 should have an analytical
property known as d-monotonicity. Se McNeil and Neslehova (2007) for details. One usually also
assumes that ϕ(0) = ∞, i.e. that the Archimedean copula is strict. Consider for example the
popular Gumbel (Gumbel, 1960) and Clayton (Clayton, 1978) copulae. The generator functions
for these two copulae are given by ϕ(t) = (− log(t))θ and ϕ(t) = (t−θ − 1)/θ, respectively.

The fully nested Archimedean construction (FNAC)

A simple generalization of (VI.1) can be found in Joe (1997) and is also discussed in Embrechts
et al. (2003), Whelan (2004), Savu and Trede (2006) and McNeil (2007). The structure, which is
shown in Figure VI.1 for the four-dimensional case, is quite simple, but notationally cumbersome.
As seen from the figure, one simply adds a dimension step by step. The nodes u1 and u2 are coupled
through copula C11, node u3 is coupled with C11(u1, u2) through copula C21, and finally node u4

is coupled with C21(u3, C11(u1, u2)) through copula C31. Hence, the copula for the 4-dimensional
case requires three bivariate copulae C11, C21, and C31, with corresponding generators ϕ11, ϕ21,
and ϕ31:

C(u1, u2, u3, u4) = C31(u4, C21(u3, C11(u1, u2)))

= ϕ−1
31

{
ϕ31(u4) + ϕ31(ϕ

−1
21 {ϕ21(u3) + ϕ21(ϕ

−1
11 {ϕ11(u1) + ϕ11(u2)})})

}
.

For the d-dimensional case, the corresponding expression becomes

C(u1, . . . , ud) = ϕ−1
d−1,1{ϕd−1,1(ud) + ϕd−1,1 ◦ ϕ−1

d−2,1{ϕd−2,1(ud−1) + ϕd−2,1 (VI.2)

◦ . . . ◦ ϕ−1
11 {ϕ11(u1) + ϕ11(u2)}}}.

In this structure, which Whelan (2004) refers to as fully nested, all bivariate margins are themselves
Archimedean copulae. It allows for the free specification of d − 1 copulae and corresponding
distributional parameters, while the remaining (d−1)(d−2)/2 copulae and parameters are implicitly
given through the construction. More specifically, in Figure VI.1, the two pairs (u1, u3) and (u2, u3)
both have copula C21 with dependence parameter θ21. Moreover, the three pairs (u1, u4), (u2, u4)
and (u3, u4) all have copula C31 with dependence parameter θ31. Hence, when adding variable k
to the structure, we specify the relationships between k pairs of variables.

The FNAC is a construction of partial exchangeability and there are some technical conditions
that need to be satisfied for (VI.2) to be a proper d-dimensional copula. The consequence of these
conditions for the FNAC is that the degree of dependence, as expressed by the copula parameter,
must decrease with the level of nesting, i.e. θ11 ≥ θ21 ≥ . . . ≥ θd−1,1, in order for the resulting
d-dimensional distribution to be a proper copula.

The partially nested Archimedean construction (PNAC)

An alternative multivariate extension is the PNAC. This structure was originally proposed by Joe
(1997) and is also discussed in Whelan (2004), McNeil et al. (2006) (where it is denoted partially
exchangeable) and McNeil (2007).

The lowest dimension for which there is a distinct structure of this class is four, when we have
the following copula:

C(u1, u2, u3, u4) = C21(C11(u1, u2), C21(u3, u4))

= ϕ−1
21 {ϕ21(ϕ

−1
11 {ϕ11(u1) + ϕ11(u2)}) + ϕ21(ϕ

−1
12 {ϕ12(u3) + ϕ12(u4)})}.

Figure VI.2 illustrates this structure graphically. Again the construction is notationally cumber-
some although the logic is straightforward. We first couple the two pairs (u1, u2) and (u3, u4) with
copulae C11 and C12, having generator functions ϕ11 and ϕ12, respectively. We then couple these
two copulae using a third copula C21. The resulting copula is exchangeable between u1 and u2 and
also between u3 and u4. Hence, it can be understood as a composite of the EAC and the FNAC.

(VI.3)
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u2 u3u1

C21

C31

u4

C11

Figure VI.1: Fully nested Archimedean construction.

For the PNAC, as for the FNAC, d − 1 copulae and corresponding distributional parameters
are freely specified, while the remaining copulae and parameters are implicitly given through the
construction. More specifically, in Figure VI.2, the four pairs (u1, u3), (u1, u4) (u2, u3) and (u2, u4)
will all have copula C21, with dependence parameter θ21. Similar constraints on the parameters
are required for the PNACs as for the FNACs.

C11

C21

C12

u1 u2 u3 u4

Figure VI.2: Partially nested Archimedean construction.

The general case

The generally nested Arcimedean construction was originally treated by Joe (1997, Chapter 4.2),
and is also mentioned in Whelan (2004). However, Savu and Trede (2006) were the first to provide
the notation for arbitrary nesting, and to show how to calculate the d-dimensional density in
general.

Savu and Trede (2006) use the notation hierarchical Archimedean copula for the generally
nested case. The idea is to build a hierarchy of Archimedean copulas. Assume that there are L

(VI.4)
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levels. At each level l, there are nl distinct objects (an object is either a copula or a variable).
At level l = 1 the variables u1, . . . , ud are grouped into n1 exchangeable multivariate Archimedean
copulae. These copulae are in turn coupled into n2 copulae at level l = 2, and so on.

Figure VI.3 shows an example. The 9-dimensional copula in the figure is given by

C(u1, . . . u9) = C41(C31(C21(C11(u1, u2), u3, u4), u5, u6), C22(u7, C12(u8, u9))).

At level one, there are two copulae. Both are two-dimensional EACs. The first, C11 joins the
variables u1 and u2, while the other, C12, joins u8 and u9. At the second level, there are also two
copulae. The first, C21, joins the copula C11 with the two variables u3 and u4, while the other, C22

joins C12 and u7. At the third level there is only one copula, C31, joining C21, u5 and u6. Finally,
at level four, the copula C41 joins the two copulae C31 and C22.

There are a number of conditions to ensure that the resulting structure is a valid Archimedean
copula (Savu and Trede, 2006). The number of copulas must decrease at each level, the top level
may only contain one copula and all the inverse generator functions must be completely monotone.
Further, we must have that the degree of dependence must decrease with the level of nesting. For
example in Figure VI.3 we must have that θ11 ≥ θ21 ≥ θ31 ≥ θ41 and θ12 ≥ θ22 ≥ θ41. If mixing
copula generators belonging to different Archimedean families, even this requirement might not be
sufficient. Two Archimedean copulas from families 1 and 2 can only be nested if the derivative of
the product ϕ1 ◦ ϕ−1

2 is completely monotonic (McNeil, 2007). The issue of which copula families
that can be mixed has been considered in some detail in Joe (1997), but it is still not fully explored.
Hence, here we only work with structures for which all the generators are from the same family.

Unfortunately, it is not possible to obtain a simple expression for the density of a hierarchical
Archimedean copula. Due to the complex structure of this construction, one has to use a recursive
approach. One differentiates the d-dimensional top level copula with respect to its arguments using
the chain rule. See Savu and Trede (2006) for more details.

u1 u2 u3 u4 u5 u6 u7 u9u8

C31

C21

C11 C12

C22

C41

Figure VI.3: Hierarchically nested Archimedean construction.

Parameter estimation

For the NACs, as for the EAC, the parameters may be estimated by maximum likelihood. However,
not even for the EAC it is straightforward to derive the density in general for all parametric

(VI.5)
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families. For instance, for the Gumbel family, one has to resort to a computer algebra system, such
as Mathematica, or the function D in R, to derive the d-dimensional density.

Savu and Trede (2006) give the density expression for a general NAC. The density is obtained
using a recursive approach. Hence, the number of computational steps needed to evaluate the
density increases rapidly with the complexity of the copula, and parameter estimation becomes
very time consuming in high dimensions.

Simulation

Simulating from the higher-dimensional constructions is a very important and central practical
task. Simulating from an EAC is usually rather simple, and several algorithms exist. A popular
algorithm utilizes the representation of the Archimedean copula generator using Laplace transforms
(see e.g. Frees and Valdez (1998)). McNeil (2007) shows how to use the Laplace-transform method
also for the NACs, in the case where all generators are taken from either the Gumbel- or the
Clayton family. A problem with the Laplace transform method is that it is limited to copulae
for which we can find a distribution that equals the Laplace transform of the inverse generator
function, and from which we can easily sample. For some copulae, e.g. Frank, there is, as of now,
no alternative to the conditional inversion method described in e.g. Embrechts et al. (2003). This
procedure involves the d − 1 first derivatives of the copula function and, in most cases, numerical
inversion. The higher-order derivatives are usually extremely complex expressions (see e.g. Savu
and Trede (2006)). Hence, simulation may become very inefficient for high dimensions.

VI.2.2 The pair-copula constructions (PCC)

While the NACs constitute a large improvement compared to the EAC, they still only allow for
the modelling of up to d− 1 copulae. An even more flexible structure, the PCC, allows for the free
specification of d(d−1)/2 copulae. This structure was orginally proposed by Joe (1996), and it has
later been discussed in detail by Bedford and Cooke (2001, 2002), Kurowicka and Cooke (2006)
(simulation) and Aas et al. (2007) (inference). Similar to the NAC’s, the PCC’s are hierarchical in
nature. The modelling scheme is based on a decomposition of a multivariate density into d(d−1)/2
bivariate copula densities, of which the first d − 1 are unconditional, and the rest are conditional.

While the NACs are defined through their distribution functions, the PCCs are usually rep-
resented in terms of the density. Two main types of PCCs have been proposed in the literature;
canonical vines and D-vines (Kurowicka and Cooke, 2004). Here, we concentrate on the D-vine
representation, for which the density is (Aas et al., 2007):

f(x1, . . . xd) =

d∏
k=1

f(xk)

d−1∏
j=1

d−j∏
i=1

cj,i {F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)} . (VI.3)

The conditional distribution functions are computed using (Joe, 1996)

F (x|v) =
∂ Cx,vj |v−j

{F (x|v−j).F (vj |v−j)}
∂F (vj |v−j)

, (VI.4)

where Cij|k is a bivariate copula distribution function. To use this construction to represent a
dependency structure through copulas, we assume that the univariate margins are uniform in [0,1].
One 4-dimensional case of (VI.3) is

c(u1, u2, u3, u4) = c11(u1, u2) · c12(u2, u3) · c13(u3, u4)

· c21(F (u1|u2), F (u3|u2)) · c22(F (u2|u3), F (u4|u3))

· c31(F (u1|u2, u3), F (u4|u2, u3)),

where F (u1|u2) = ∂ C11(u1, u2)/∂u2, F (u3|u2) = ∂ C12(u2, u3)/∂u2, F (u2|u3) = ∂ C12(u2, u3)/∂u3,
F (u4|u3) = ∂ C13(u3, u4)/∂u3, F (u1|u2, u3) = ∂ C21(F (u1|u2), F (u3|u2))/∂F (u3|u2) and
F (u4|u2, u3) = ∂ C22(F (u4|u3), F (u2|u3))/∂F (u2|u3). Figure VI.2.2 illustrates this structure.

(VI.6)
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C13

u1

C12

C31

C22

C11

C21

u2 u3 u4

Figure VI.4: Pair-copula construction.

The copulae involved in (VI.3) do not have to belong to the same family. In contrast to the
NACs they do not even have to belong to the same class. The resulting multivariate distribution will
be valid even if we choose, for each pair of variables, the parametric copula that best fits the data.
As seen from (VI.3) the PCC consists of d(d−1)/2 bivariate copulae of known parametric families,
of which d−1 are copulae of pairs of the original variables, while the remaining (d−1)(d−2)/2 are
copulae of pairs of variables constructed using (VI.4) recursively. This means that in contrast to
the NACs, the unspecified bivariate margins will belong to a known parametric family in general.
However, it can be shown, that e.g. upper (lower) tail dependence on the bivariate copulae at the
lowest level is a sufficient condition for all bivariate margins to have upper (lower) tail dependence1.

Parameter estimation

The parameters of the PCC may be estimated by maximum likelihood. In contrast to the NACs,
the density is explicitly given. However, also for this construction, a recursive approach is used
(see Aas et al. (2007, Algorithm 4)). Hence, the number of computational steps to evaluate the
density increases rapidly with the complexity of the copula, and parameter estimation becomes
time consuming in high dimensions.

Simulation

The simulation algorithm for a D-vine is straightforward and simple to implement, see Aas et al.
(2007, Algorithm 2). Like for the NACs, the conditional inversion method is used. However, to
determine each of the conditional distribution functions involved, only the first partial derivative of
a bivariate copula needs to be computed (see Aas et al. (2007)). Hence, the simulation procedure
for the PCC is in general much simpler and faster than for the NACs.

VI.2.3 Comparison

In this section we summarize the differences between the NACs and the PCCs with respect to ease
of interpretation, applicability and computational complexity.

1Personal communication with Harry Joe.

(VI.7)
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Table VI.1: Summary of construction properties for the EAC, NAC and PCC
constructions.

Constr.
Max no. of copulae Parameter Copula
freely specified constraints mixing

EAC 1 None Only one copula

NAC d − 1 Dependence must decrease May combine different Arch.
with level of nesting families but under complete

monotonicity restrictions

PCC d(d − 1)/2 None May combine any copula
families from any class

First, the main advantage of the PCCs is the increased flexibility compared to the NACs. While
the NACs only allow for the free specification of d−1 copulae, d(d−1)/2 copulae may be specified in
a PCC. Next, for the NACs there are restrictions on which Archimedean copulae that can be mixed,
while the PCCs can be built using copulae from different families and classes. Finally, the NACs
have another even more important restriction in that the degree of dependence must decrease with
the level of nesting. When looking for appropriate data sets for the applications in Section VI.3, it
turned out to be quite difficult to find real-world data sets satisfying this restriction. Hence, this
feature of the NACs might prevent them from being extensively used in real-world applications.
For the PCCs, on the other hand, one is always guaranteed that all parameter combinations are
valid. Table VI.1 summarizes these properties.

It is our opinion that another advantage of the PCCs is that they are represented in terms of
the density and hence easier to handle than the NACs that are defined through their distribution
functions. The PCCs are also in general more computationally efficient than the NACs. Table
VI.2 shows computational times (s) in R 2 for likelihood evaluation, parameter estimation and
simulation for different structures. The parameter estimation is done for the data set described
in Section VI.3.3, and the simulation is performed using the parameters in Table VI.6 (based on
1000 samples). The values for NAC were computed using density expressions found in Savu and
Trede (2006). However, general expressions may also easily be obtained symbolically using e.g. the
function D in R. The estimation times in Table VI.2 are only indicative and included as examples
since they are very dependent on size and structure of the data set. It is more appropriate to study
the times needed to compute one evaluation of the likelihood given in the leftmost column. As
can be seen from the table, the PCC is superior to the NAC for likelihood evaluation in both the
Gumbel and the Frank case. Moreover, it is much faster for simulation in the Frank case, since
one in this case must use the general conditional inversion algorithm with numerical inversion for
the NAC. In the Gumbel case, however, one can perform much more efficient simulation from the
NAC using the algorithms given in McNeil (2007). Hence, in this case, the NAC is superior to the
PCC.

The multivariate distribution defined through a NAC will always by definition be an Archimedean
copula (assuming that all requirements are satisfied), and all bivariate margins will belong to a
known parametric family. This is not the case for the PCCs, for which neither the multivariate dis-
tribution nor the unspecified bivariate margins will belong to a known parametric family in general.
However, we do not view this as a problem, since both might easily be obtained by simulation.

Finally, it should be noted that for both structures, an important part of the full estimation
problem is how to select the ordering of the variables. For smaller dimensions (say 3 and 4), one may
estimate the parameters of all possible orderings and compare the resulting log-likelihoods. This
is in practice infeasible for higher dimensions, since the number of different orderings increases
very rapidly with the dimension of the data set. One may instead determine which bivariate

2The experiments were run on a Intel(R) Pentium(R) 4 CPU 2.80GHz PC.
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Table VI.2: Computational times in sec. for different constructions and copulae,
fitted to the equity data in Section VI.3.3.

Method Likelihood evaluation Estimation Simulation

Gumbel

NAC 0.32 34.39 0.02
PCC 0.04 5.09 7.56

Frank

NAC 0.12 5.34 64.83
PCC 0.02 1.22 5.82

relationships that are most important to model correctly and let this determine which ordering to
choose. Very recently, there has been some attempts of formalising this procedure, both for the
NACs (Okhrin et al., 2007) and for the PCCs (Min and Czado, 2007).

VI.3 Applications

The fit of the NAC and the PCC is assessed for two different four-dimensional data sets; precip-
itation values and equity returns. Appropriate modelling of precipitation is of great importance
to insurance companies which are exposed to growth in damages to buildings caused by external
water exposition. Modelling precipitation and valuing related derivative contracts is also indeed
a frontier in the field of weather derivatives, see e.g. Musshoff et al. (2006). The dependencies
within an equity portfolio can have enormous impacts on e.g. capital allocation and the pricing of
collateralized debt obligations. Before these two applications are further treated, we describe the
tests used for goodness-of-fit in our study.

VI.3.1 Goodness-of-fit

To evaluate whether a copula or copula construction appropriately fit the data at hand, goodness-
of-fit testing is called upon. Lately, several procedures have been proposed, see e.g. Berg (2007b)
for an overview and power comparison. These power comparisons show that no procedure is always
the best. However, the procedure that showed to have the overall best performance in the study
referred to above, was one based on the empirical copula Cn introduced by Deheuvels (1979),

Cn(u) =
1

n + 1

n∑
j=1

1(Uj1 ≤ u1, . . . , Ujd ≤ ud), u = (u1, . . . , ud) ∈ (0, 1)d,

where Uj = (Uj1, . . . , Ujd) are the U(0, 1)d pseudo-observations, defined as normalized ranks. This
procedure is based on the process Cn =

√
n{Cn − Cθ̂n

} where θ̂n is some consistent estimator of
θ. Basing a goodness-of-fit procedure on Cn was originally proposed by Fermanian (2005), but
there dismissed due to poor statistical properties. However, it has later been shown that it has the
necessary asymptotic properties to be a justified goodness-of-fit procedure (Quessy, 2005; Genest
and Rémillard, 2008). Moreover, Genest et al. (2008) and Berg (2007b) have examined the power
of Cn and concluded that it is a very powerful procedure in most cases.

We use the Cramér-von Mises statistic, defined by:

Sn = n

∫
[0,1]d

{Cn(u) − Cθn(u)}2 dCn(u) =

n∑
j=1

{Cn(Uj) − Cθn(Uj)}2
.

Large values of Sn means a poor fit and leads to the rejection of the null hypothesis copula. In
practice, the limiting distribution of Sn depends on θ. Hence, approximate p-values for the test

(VI.9)



134 Paper VI. Models for construction of multivariate dependence: a comparison study

must be obtained through a parametric bootstrap procedure. We adopt the procedure in Appendix
A in Genest et al. (2008), setting the bootstrap parameters m and N to 5000 and 1000, respectively.
The validity of this bootstrap procedure was established in Genest and Rémillard (2008).

It will be shown in Section VI.3.2 that for the precipitation data set, Sn leads to the rejection
of all the different NAC and PCC structures that are investigated. Hence, to be able to compare
the two structures for this data set, we also use another goodness-of-fit procedure based on the
process Kn =

√
n{Kn − Kθ̂n

}, where

Kn(t) =
1

n + 1

n∑
j=1

1(Cn(Uj) ≤ t),

is the empirical distribution function of Cn(u). See Genest et al. (2006a) for details. Also for this
procedure we use the Cramér-von Mises statistic, i.e.:

Tn =

∫
[0,1]d

{
Kn(u) − Kθ̂(u)

}2
dKn(u) =

n∑
j=1

{
Kn(Uj) − Kθ̂n

(Uj)
}2

,

and parametric bootstrap to obtain the p-values.
For both procedures, we use a 5% significance level for all experiments in this section.

VI.3.2 Application 1: Precipitation data

In this section we study daily precipitation data (mm) for the period 01.01.1990 to 31.12.2006
for 4 meteorological stations in Norway; Vestby, Ski, Nannestad and Hurdal, obtained from the
Norwegian Meteorological Institute. According to Musshoff et al. (2006), the stochastic process
of daily precipitation can be decomposed into a stochastic process of “rainfall”/”no rainfall”, and a
distribution for the amount of precipitation given that it rains. Here, we are only interested in the
latter. Hence, before further processing, we remove days with non-zero precipitation values for at
least one station, resulting in 2065 observations for each variable. Figures VI.5-VI.6 show the daily
precipitation values and corresponding copulae for pairs of meteorological stations. Since we are
mainly interested in estimating the dependence structure of the stations, the precipitation vectors
are converted to uniform pseudo-observations before further modelling. In light of recent results
due to Chen and Fan (2006), the method of maximum pseudo-likelihood is consistent even when
time series models are fitted to the margins.

Based on visual inspection and preliminary goodness-of-fit tests for bivariate pairs (the copulae
taken into consideration were the Student, Clayton, survival Clayton, Gumbel and Frank copulae),
we decided to examine Gumbel and Frank NACs and Gumbel, Frank and Student PCCs for the
precipitation data.

Hierarchically nested Archimedean construction

The most appropriate ordering of the variates in the decomposition is found by comparing Kendall’s
tau values for all bivariate pairs. These are shown in Table VI.3. They confirm the intuition that
the degree of dependence between the variables corresponds to the distances between the stations.
Ski and Vestby are closely located, and so is Hurdal and Nannestad, while the distance from
Ski/Vestby to Hurdal/Nannestad is larger. Hence, we choose C11 and C12 to be the copulae of
Vestby and Ski and Nannestad and Hurdal, respectively, while C21 is the copula of the remaining
pairs.

The two leftmost columns of Table VI.4 show the estimated parameter values, resulting log-
likelihoods, and estimated p-values for the Gumbel and Frank NACs, fitted to the precipitation
data. We see that both goodness-of-fit procedures strongly reject the two NAC constructions.
Hence we conclude that the NACs considered are not flexible enough to fit the precipitation data
appropriately.

(VI.10)
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Figure VI.5: Daily precipitation (mm) for pairs of meteorological stations for the
period 01.01.1990 to 31.12.2006, zeros removed.
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Figure VI.6: Pseudo-observations corresponding to Figure VI.5.
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Table VI.3: Estimated Kendall’s tau for pairs of variables.

Location Ski Nannestad Hurdal

Vestby 0.79 0.49 0.47
Ski 0.56 0.53
Nannestad 0.71

Table VI.4: Estimated parameters, log-likelihood and estimated p-values for NACs
and PCCs fitted to the precipitation data.

Parameter
NAC PCC

Gumbel Frank Gumbel Frank Student

θ11 \ ν11 4.32 16.69 4.34 16.78 0.93 \ 3.6
θ12 \ ν12 3.45 13.01 2.24 7.10 0.78 \ 6.7
θ13 \ ν13 - - 3.45 12.98 0.90 \ 5.5
θ21 \ ν21 1.97 5.96 1.01 0.08 0.01 \ 9.6
θ22 \ ν22 - - 1.02 0.61 0.09 \ 14.5
θ31 \ ν31 - - 1.03 0.27 0.04 \ 17.3

Log-likelihood 4741.05 4561.72 4842.25 4632.19 4643.38

p-value of Sn 0.000 0.000 0.000 0.000 0.000
p-value of Tn 0.002 0.000 0.089 0.013 0.070

Pair-copula construction

Also for the PCCs, the variables are ordered such that the copulae fitted at level 1 in the de-
composition are those corresponding to the three largest Kendall’s tau values. Hence, C11 is the
copula of Vestby and Ski, C12 is the copula of Ski and Nannestad, and C13 is the copula of Ski
and Hurdal. The parameters of the PCC are estimated using Algorithm 4 in Aas et al. (2007).
The three rightmost columns of Table VI.4 show the estimated parameter values, resulting log-
likelihoods and p-values for the Gumbel, Frank and Student PCCs. We see that, as for the NACs,
all considered PCCs are strongly rejected by Sn. Hence, from the Sn-results, it is not possible to
determine which of the two constructions that best fit the precipitation data and we therefore also
used Tn. This procedure also rejects both NACs, but it fails to reject the Gumbel and Student
PCCs, with the Gumbel PCC seemingly the best. Hence, we conclude that the Gumbel PCCs
provides the best fit, but that there is a need for further research to find copula types that better
captures the properties of the precipitation data.

VI.3.3 Application 2: Equity returns

In this section, we study an equity portfolio. The portfolio is comprised of four time series of daily
log-return data from the period 14.08.2003 to 29.12.2006 (852 observations for each firm). The
data set was downloaded from http://finance.yahoo.com. The firms are British Petroleum (BP),
Exxon Mobile Corp (XOM), Deutsche Telekom AG (DT) and France Telecom (FTE). Financial
log-returns are usually not independent over time. Hence, the original vectors of log-returns are
processed by a GARCH filter before further modelling. We use the GARCH(1,1)-model (Bollerslev,
1986):

rt = c + σt zt

E[zt] = 0 and Var[zt] = 1 (VI.5)

σ2
t = a0 + a ε2

t−1 + b σ2
t−1.

(VI.12)
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Figure VI.7: GARCH-filtered daily log-returns for our four stocks for the period
from 14.08.2003 to 29.12.2006.

It is well recognised that GARCH models, coupled with the assumption of conditionally normally
distributed errors are unable to fully account for the tails of the distributions of daily returns.
Hence, we follow Venter and de Jongh (2002) and use the Normal Inverse Gaussian (NIG) distri-
bution (Barndorff-Nielsen, 1997) as the conditional distribution. In a study performed by Venter
and de Jongh (2004) the NIG distribution outperforms a skewed Student’s t-distribution and a
non-parametric kernel approximation as the conditional distribution of a one-dimensional GARCH
process. After filtering the original returns with (VI.5) (estimated parameter values are shown in
Appendix VI.A), the standardised residual vectors are converted to uniform pseudo-observations.
Figures VI.6-VI.8 show the filtered daily log-returns and pseudo-observations for each pair of assets.

Based on visual inspection and preliminary goodness-of-fit tests for bivariate pairs (like for
the precipitation data, the copulae taken into consideration were the Student, Clayton, survival
Clayton, Gumbel and Frank copulae), we decided to examine a Frank NAC and Frank and Student
PCC’s for this data set.

Hierarchically nested Archimedean construction

Also for this data set, the most appropriate ordering of the variates in the decomposition is found
by comparing Kendall’s tau values for all bivariate pairs. The Kendall’s tau values are shown in
Table VI.5. As expected, stocks within one industrial sector are more dependent than stocks from
different sectors. Hence, we choose C11 as the copula of BP and XOM , C12 as the copula of DT
and FTE, and C21 as the copula of the remaining pairs. The leftmost column of Table VI.6 shows
the estimated parameter values, resulting log-likelihood and p-value for the Frank HNAC. Even
though this structure is not rejected by Tn, the strong rejection by Sn suggests that the fit is not
very good. Hence, we conclude that the Frank NAC is not able to appropriately fit the equity
data.

(VI.13)
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Figure VI.8: Pseudo-observations corresponding to Figure VI.7.

Table VI.5: Estimated Kendall’s tau for pairs of variables for our four stocks.

Firm XOM DT FTE

BP 0.45 0.19 0.20
XOM 0.23 0.17
DT 0.48

(VI.14)



VI.3. Applications 139

Table VI.6: Estimated parameters, log-likelihood and estimated p-values for NAC
and PCCs fitted to the filtered equity data.

Parameter
NAC PCC
Frank Frank Student

θ11 \ ν11 5.57 5.56 0.70 \ 13.8
θ12 \ ν12 6.34 1.89 0.32 \ 134.5
θ13 \ ν13 - 6.32 0.73 \ 6.4
θ21 \ ν21 1.78 0.91 0.14 \ 12.0
θ22 \ ν22 - 0.30 0.06 \ 20.6
θ31 \ ν31 - 0.33 0.07 \ 17.8

Log-likelihood 616.45 618.63 668.49

p-value of Sn 0.006 0.008 0.410
p-value of Tn 0.385 0.385 0.697

Pair-copula construction

Again, the most appropriate ordering of the variates in the decomposition is determined by the
size of the Kendall’s tau values. Hence, we choose C11 as the copula of BP and XOM , C12 as the
copula of XOM and DT , and C13 as the copula of DT and FTE. The parameters of the PCC
are estimated by maximum likelihood, see Algorithm 4 in Aas et al. (2007). The two rightmost
columns of Table VI.6 shows the estimated parameter values, resulting log-likelihood and estimated
p-values for the Frank and Student PCCs. We see that the Frank PCC is rejected by Sn. Moreover,
the p-value of Tn is equal to the one for the Frank NAC. The Student PCC, on the other hand,
provides a very good fit and is not even rejected by Sn. Hence, we conclude that it fits the equity
data very well.

VI.3.4 Validation

With the increasing complexity of models there is always the risk of overfitting the data. To
examine whether this is the case for the PCC, we validate it out-of-sample for the equity portfolio.
More specifically, we use the GARCH-NIG-Student PCC described in Section VI.3.3 to determine
the risk of the return distribution for an equally weighted portfolio of BP, XOM, DT, and FTE
over a one-day horizon. The equally-weighted portfolio is only meant as an example. In practice,
the weights will fluctuate unless the portfolio is rebalanced every day.

The model estimated from the period 14.03.2003 to 29.12.2006 is used to forecast 1-day VaR
at different significance levels for each day in the period from 30.12.2006 to 11.06.2007 (110 days).
The test procedure is as follows: For each day t in the test set:

1. For each variable j = 1, . . . , 4, compute the one-step ahead forecast of σj,t, given information
up to time t.

2. For each simulation n = 1, . . . , 10, 000

• Generate a sample u1, . . . u4 from the estimated Student PCC.

• Convert u1, . . . u4 to NIG(0,1)-distributed samples z1, . . . , z4 using the inverses of the
corresponding NIG distribution functions.

• For each variable j = 1, . . . , 4, determine the log-return rj,t = cj,t + σj,t zj . (Here cj,t

is computed as the mean of the last 100 observed log-returns.)

• Compute the return of the portfolio as rp,t =
∑4

j=1
1
4rj,t.

3. For significance levels q ∈ {0.005, 0.01, 0.05}
• Compute the 1-day VaRq

t as the qth-quantile of the distribution of rp,t.

(VI.15)
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Figure VI.9: Log-returns for the equity portfolio for the period 30.12.2006 -
11.06.2007 along with 0.5%, 1%, 5% VaR simulated from the estimated GARCH-
NIG-Student PCC.

Table VI.7: Number of violations of VaR, expected number of violations and
p-values for the Kupiec test.

Significance level 0.005 0.01 0.05

Observed 1 2 9
Expected 0.55 1.1 5.5
P-value 0.13 0.44 0.16

• If VaRq
t is greater than the observed value of rp,t this day, a violation is said to occur.

Figure VI.9 shows the actual log-returns for the portfolio in the period 30.12.2006 to 11.06.2007
and the corresponding VaR levels obtained from the procedure described above. Further, the two
upper rows of Table VI.7 gives the number of violations x, of VaR for each significance level and
with the expected values, respectively. To test the significance of the differences between the
observed and the expected values, we use the likelihood ratio statistic by Kupiec (1995). The null
hypothesis is that the expected proportion of violations is equal to α. Under the null hypothesis,
the likelihood ratio statistic given by

2ln

(( x

N

)x (
1 − x

N

)N−x
)
− 2ln

(
αx(1 − α)N−x

)
,

where N is the length of the sample, is asymptotically distributed as χ2(1). We have computed
p-values of the null hypothesis for each quantile. The results are shown in the lower row of Table
VI.7. If we use a 5% level for the Kupiec LR statistic, the null hypothesis is not rejected for any of
the three quantiles. Hence, the GARCH-NIG-Student PCC seems to work very well out-of-sample.

VI.4 Summary and Conclusions

In this paper we have reviewed two classes of structures for construction of higher-dimensional
dependence; the nested Archimedean constructions (NACs) and the pair-copula constructions

(VI.16)
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(PCCs). For both structures, a multivariate data set is modelled using a cascade of lower-
dimensional copulae. They differ however in their construction of the dependence structure, the
PCC being more flexible in that it allows for the free specification of d(d− 1)/2 copulae, while the
NAC’s only allow for d − 1.

Simulation and estimation techniques for the two structures have been examined, and we have
shown that the PCCs in general are more computationally efficient than the NACs. The fit of the
two constructions has been tested on two different four-dimensional data sets; precipitation values
and equity returns, using state of the art copula goodness-of-fit procedures. The NACs considered
are strongly rejected for both our data sets. For the precipitation data the Gumbel PCC provides
a better fit. However, since even this structure is rejected by one of the goodness-of-fit tests used,
one should look for other copula types that might capture the properties of the precipitation data
even better than the Gumbel copula does. For the equity data, the Student PCC provides a good
fit, and through VaR calculations we have shown that it does not overfit the training data, but
works very well also out-of-sample.

Based on the properties presented and the results from the two applications we recommend
in general the PCC over the NAC for the following reasons. First, the NAC has an important
restriction in that the degree of dependence must decrease with the level of nesting. When look-
ing for appropriate data sets for the applications in this paper, it turned out to be quite difficult
to find real-world data sets satisfying this restriction. In addition, the NAC is restricted to the
Archimedean class, and there are even restrictions on which Archimedean copulae that can be
mixed. There might be real-world situations where there are natural hierarchy groupings of vari-
ables. In such cases the NAC’s may come into consideration. However, the technical restrictions
of the NAC might prevent extensive use.

The PCC, on the other hand, can be built using copulas from any class and there are no
restrictions on the parameters of the structure. As far as we are concerned, the only potential
disadvantage of the PCC compared to the NAC is that neither the unspecified bivariate margins
nor the multivariate distribution in general will belong to a known parametric family. However, we
do not view this as a significant problem since these distributions might easily be obtained through
simulation.

Acknowledgements: Daniel Bergs work is supported by the Norwegian Research Council,
grant number 154079/420 and Kjersti Aas’ part is sponsored by the Norwegian fund Finans-
markedsfondet. We are very grateful to Cornelia Savu, Institute for Econometrics, University of
Münster, Germany, for providing us with her code for the NAC’s along with helpful comments. In
addition we would like to express our deep gratitude for assistance on the GARCH-NIG filtration
to Professor J.H. Venter, Centre of Business Mathematics and Informatics, North-West Univer-
sity, Potchefstroom, South Africa. Finally, we thank participants at the conference on copulae
and multivariate probability distributions at Warwick Business School in September 2007 for their
valuable comments, in particular Professor Alexander McNeil.

(VI.17)



142 Paper VI. Models for construction of multivariate dependence: a comparison study

Table VI.8: Estimated GARCH and NIG parameters for our four stocks.

Parameter BP XOM DT FTE

a0 1.598e-06 1.400e-06 1.801e-06 1.231e-06
a 0.010 0.023 0.025 0.028
b 0.978 0.968 0.963 0.966

β -0.357 -0.577 0.105 0.037
ψ 3.686 2.293 1.173 1.670

VI.A Parameters for GARCH-NIG model

Table VI.8 shows the estimated parameters for the GARCH-NIG model used in Section VI.3.3.
For further details of the estimation procedure see Venter and de Jongh (2002).

(VI.18)
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