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Abstract . Copulae is one of the main ways of modelling dependence. However, to check whether the
dependency structure of a data set is appropriately modelled by a chosen copula, there is no recommended
method agreed upon. Several copula goodness-of-fit approaches have been proposed lately. Many reduce
the multivariate problem to a univariate one and then apply a univariate test. This makes the approach
numerically efficient even for large dimensional problems. In this paper we fit three such approaches into the
same framework to ease comparison. Generalizations and improvements are attempted. We supplement
our analysis with a full multivariate approach. We examine properties, strengths and weaknesses of each
approach. In addition we compare the power of the approaches at distinguishing tail heaviness and skewness
properties. Results show that there are several alternatives for the bivariate case while for higher dimensions
the approach proposed by Berg and Bakken (2005) stands out as having superior power and being the most
flexible approach with regards to weighting of particular regions of the copula. Concluding remarks and
recommendations are made.
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1. Introduction

Copulae have proved to be a very useful tool in the analysis of dependency structures. The concept of
copulae was introduced by Sklar (1959), but was first used in financial applications by Embrechts et al.
(1999). Since then we have seen a tremendous increase of copula related research and applications.

The limitation of the copula approach is the lack of a recommended way of checking whether the
dependency structure of a data set is appropriately modelled by the chosen copula. Information criterions,
such as Akaike’s Information Criterion (AIC), are not able to provide any understanding about the power
of the decision rule employed. Goodness-of-fit (GOF) approaches on the other hand, are able to reject or
fail to reject a parametric copula and are thus preferred.

Several copula GOF approaches have been proposed in literature. Genest and Rivest (1993) have
developed an empirical method to identify the best copula in the Archimedean case. Fermanian (2003)
approximates the underlying probability density function by kernel smoothing of the empirical density.
Diebold et al. (1998), Diebold et al. (1999), Hong (2000), Berkowitz (2001), Thompson (2002) and
Breymann et al. (2003) focus on the probability integral transform (PIT) of Rosenblatt (1952) in the
evaluation of density models. Berg and Bakken (2005) also focus on the PIT and a transformation of
the PIT data. Panchenko (2005) focuses on positive definite bilinear forms while Genest et al. (2006)
utilize the Kendall’s process and the empirical copula in the Archimedean case. Some approaches are full
multivariate approaches while several approaches reduce the multivariate problem to a univariate problem,
and then apply some univariate test. The latter approach leads to numerically efficient approaches for
high dimensional problems.

∗∗This research was supported by the Norwegian Research Council, grant number 154079/420.
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In this paper we consider three such dimension reduction approaches, namely the ones by Breymann
et al. (2003), Berg and Bakken (2005) and Genest et al. (2006). We supplement our analysis by considering
the full multivariate approach by Panchenko (2005). Power at detecting tail heaviness and skewness
properties will be examined and compared. The objective of this paper is to provide an overview of the
copula GOF approaches proposed lately, comparing them and illustrating various properties, strengths
and weaknesses.

The paper is organized as follows. In Section 2 we recall some basic theory that will be useful, such
as copulae, the probability integral transform and univariate test statistics. Section 3 examines the four
GOF approaches. In Section 4 we present results while Section 5 concludes.

2. Basic theory

2.1. Copula Basics
The definition of a d-dimensional copula is a multivariate distribution C, with uniform margins U(0, 1).
Sklar (1959)’s theorem states that every multivariate distribution F with margins F1, . . . , Fd can be
written as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.1)

for some copula C. If we have a random vector X = (X1, . . . ,Xd), the copula of their joint distribution
function may be extracted from Equation (2.1):

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)), (2.2)

where the F−1
i ’s are the cumulative distribution functions (cdf) of the margins.

For the implicit copula of an absolutely continuous joint distribution function F , with strictly contin-
uous marginal distribution functions F1, . . . , Fd, the copula density is given by

c(u) =
f(F−1

1 (u1), . . . , F
−1
d (ud))

f1(F
−1
1 (u1)) · · · fd(F

−1
d (ud))

. (2.3)

Hence,

c(F1(x1), . . . , Fd(xd)) =
f(x1, . . . , xd)

f1(x1) · · · fd(xd)
. (2.4)

This means that a general d-dimensional density can be written as

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd) (2.5)

for some copula density c(·).
The most attractive properties of copulae, making it so popular for financial applications, is the

decoupling of the copula and the margins and the invariance to strictly increasing transformations. For
a thorough analysis of copulae, see Joe (1997) or Nelsen (1999).

2.2. Empirical Distributions
For copula GOF testing we are interested in the fit of the copula alone. We do not wish to introduce any
distributional assumptions for the margins. Instead we use empirical margins to transform the observed
data set into the observed copula.

The empirical marginal cdf for n observations X1i, . . . ,Xni of a variable Xi is

F̂i(x) =
1

n + 1

n∑

j=1

I(Xji ≤ x) i = 1, . . . , d, (2.6)

where I(·) is the indicator function returning 1 if Xji ≤ x and 0 otherwise. Here n + 1 is used for
division to keep the empirical cdf lower than 1. The empirical distribution converges towards the actual
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distribution function as n → ∞. We can then define the empirical uniform values uji = F̂i(xji), i =
1, . . . , d, j = 1, . . . , n.

Using the empirical marginal cdf’s, the empirical copula is given by

Ĉ(u) =
1

n + 1

n∑

j=1

I
(
F̂1(Xj1) ≤ u1, . . . , F̂d(Xjd) ≤ ud

)

=
1

n + 1

n∑

j=1

I (Uj1 ≤ u1, . . . , Ujd ≤ ud) . (2.7)

where u = (u1, . . . , ud). The empirical copula is the observed frequency of P (U1 < u1, . . . , Ud < ud).

2.3. The Probability Integral Transform
The PIT transforms a set of dependent variables into a new set of independent U(0, 1) variables, given the
multivariate distribution. The PIT is a universally applicable way of creating a set of iid U(0, 1) variables
from any data set with known distribution. Given a test for multivariate, independent uniformity, this
transformation can be used to test the fit of any assumed model. The concept was first introduced by
Rosenblatt (1952) and can be interpreted as the inverse of simulation.

Definition 2.1 (PROBABILITY INTEGRAL TRANSFORM). Let X = (X1, . . . ,Xd) denote
a random vector with marginal distributions Fi(xi) = P (Xi ≤ xi) and conditional distributions
Fi|1...i−1(Xi ≤ xi|X1 = x1, . . . ,Xi−1 = xi−1) for i = 1, . . . , d. The PIT of X is defined as
T (X) = (T1(X1), . . . , Td(Xd)) where Ti(Xi) is defined as follows:

T1(X1) = P (X1 ≤ x1) = F1(x1),

T2(X2) = P (X2 ≤ x2|X1 = x1) = F2|1(x2|x1),

...

Td(Xd) = P (Xd ≤ xd|X1 = x1, . . . ,Xd−1 = xd−1) = Fd|1...d−1(xd|x1, . . . , xd−1).

The random variables Zi = Ti(Xi), i = 1, . . . , d are uniformly and independently distributed on [0, 1]d.

A recent application of the PIT is multivariate GOF tests. A data set is first PIT under a null
hypothesis, and then a test of multivariate independence is performed. The null hypothesis may be e.g.
a parametric copula family. The parameters of this copula needs to be estimated as a part of the PIT.
Genest et al. (1995) gives an introduction to parameter estimation for copulae.

An advantage with the PIT in this setting is that the null- and alternative hypotheses are the same,
regardless of the distribution before the PIT. The PIT also enables weighting in a simple way since the
data, under H0, is always iid U(0, 1). Hong and Li (2002) report Monte Carlo evidence of multivariate
tests using PIT variables outperforming tests using the original random variables. Chen et al. (2004)
believe that a similar conclusion also applies to GOF tests for copulae. A disadvantage with the PIT
is that it depends on the permutation of the variables. However, as long as the permutation is decided
randomly, the results will not be influenced in any particular direction and will thus be consistent.

For more details on the PIT see e.g. Rosenblatt (1952), D’Agostino and Stephens (1986) or Breymann
et al. (2003).

2.4. Univariate Goodness-of-fit Test Statistics
There are several univariate GOF test statistics to choose among. Two main categories emerge, based
either on the max-function or integration, and either on the empirical cdf, F̂ , or the empirical probability
distribution function (pdf), f̂ . For a thorough treatment of univariate GOF test statistics, see e.g.
D’Agostino and Stephens (1986).
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Suppose we have a random vector W = (w1, . . . , wn) which is iid U(0, 1)n. Suppose further that
the cdf of W is F (w) and the pdf of W is f(w). Since W is iid U(0, 1)n we have that F (w) = w and
f(w) = 1.

2.4.1. CDF Test Statistics

We examine the following cdf statistics: Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM), Anderson-
Darling (AD) and Kolmogorov-Smirnov Anderson-Darling (KSAD). These statistics may be referred to
by different names elsewhere. We define them as follows:

T KS = supw

∣∣∣
√

n(F̂ (w)− F (w))
∣∣∣ ,= supw

∣∣∣
√

n(F̂ (w)− w)
∣∣∣ , (2.8)

T CwM = n
∫ 1

0

(
F̂ (w)− F (w)

)2

dF (w) = n
∫ 1

0

(
F̂ (w)− w

)2

dw, (2.9)

T AD = n
∫ 1

0

( bF (w)−F (w))
2

F (w)(1−F (w)) dF (w) = n
∫ 1

0

( bF (w)−w)
2

w(1−w) dw, (2.10)

T KSAD = supw

∣∣∣
√

n
bF (w)−F (w)

F (w)(1−F (w))

∣∣∣ = supw

∣∣∣
√

n
bF (w)−w
w(1−w)

∣∣∣ , (2.11)

where F̂ is the empirical cdf.
The empirical versions of these statistics are derived in Appendix B. They are:

T̂ KS =
√

n maxi=0,1;0<j≤n

{∣∣∣F̂
(

j
n+1

)
− j+i

n+1

∣∣∣
}

, (2.12)

T̂ CvM = n
3 + n

n+1

∑n
j=1 F̂

(
j

n+1

)2

− n
(n+1)2

∑n
j=1(2j + 1)F̂

(
j

n+1

)
, (2.13)

T̂ AD = n
n+1

∑n
j=1

( bF( j
n+1 )−

j
n+1 )

2

j
n+1 (1−

j
n+1 )

, (2.14)

T̂ KSAD =
√

n maxi=0,1;0<j≤n−1 or i=0;j=n

{∣∣∣∣
bF( j

n+1 )−
j

n+1

j+i
n+1 (1−

j+i
n+1 )

∣∣∣∣
}

. (2.15)

The KS statistic is known to be most sensitive around the median of the distribution and relatively
insensitive to deviations in the tails. The latter due to lower empirical cdf variance (Aslan and Zech,
2002). The CvM statistic is a member of the Cramér-von Mises family. This statistic is likely to be very
stable since areas of high probability are emphasized. It is however insensitive to tail deviance. The
AD statistic is another a member of the Cramér-von Mises family. The normalization means that this
statistic does not have any bias, neither at the center nor at the tails of the distribution. It strongly
weights deviations near w = 0 and w = 1. This is justified by the small experimental deviations here
due to the constraints F̂ (w)− w = 0 at w = 0 and w = 1. For general U(0, 1)d tests, the AD statistic is
the best for cdfs since it has no bias, in contrast to the CvM and KS statistics. The KSAD statistic is
an altered KS statistic. This statistic does not have the bias toward the center as the KS statistic has.
Thus it will be a non-biased maximum average statistic.

2.4.2. PDF Test Statistics

When using PIT variables, the density function f(w) equals unity everywhere w is defined. Thus, the χ2

statistic coincides with the L2 norm statistic. Thus, we only consider the latter:

T L2 = n

∫ 1

0

(
f̂(w)− f(w)

)2

dw = n

∫ 1

0

(
f̂(w)− 1

)2

dw, (2.16)

To approximate f̂ we consider two approaches, kernel density estimation (KDE) (for an introduction
to KDE see e.g. Azzalini and Bowman (1997) or Peterson (2004)) and binning. For the KDE approach,
the integral function of the L2 norm test statistic needs to be discretized to enable numerical calculation.
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For the binning approach, the interval [0, 1] is divided into disjoint subsets A1, . . . , Ap and the empirical

estimate of the density, the number of observed z’s in subset Ai per observation n, is given as P̂ (w ∈
Ai) = #

[
wj ∈ Ai, j = 1, . . . , n

]/
n. This subset is chosen as an evenly spaced grid since the variables are

uniform under the null hypothesis. For both approaches, q = 25 segments are chosen for discretization.
This is the number of segments used in Chen et al. (2004).

The empirical versions of the L2 norm pdf statistics are

T̂ L2KDE =
n

q

q∑

i=1

(
f̂

(
i− 1/2

q

)
− 1

)2

, (2.17)

T̂ L2BIN = n

q∑

i=1

(
P̂

(
w ∈

[
i− 1

q
,
i

q

])
− 1

q

)2

. (2.18)

The discretization of the integrals is done by assuming f̂(w) = f̂((i− 1/2)/q) for w ∈ [(i− 1)/q, i/q].

3. Copula Goodness-of-fit Testing

For univariate distributions, the GOF assessment can be performed by e.g. the well-known Anderson-
Darling (Anderson and Darling, 1954) test, or less quantitatively using a QQ-plot. In the multivariate
domain there are fewer alternatives. In financial applications, economic theory sheds little light on
the dependence structure between financial assets. Multivariate normality is often assumed a priori.
Empirical studies shows, however, that more appropriate dependence structures are available (Chen
et al., 2004; Dobrić and Schmid, 2005).

GOF approaches for copulae is a special case of the more general problem of testing multivariate
density models, but is complicated due to the unspecified marginal distributions. Empirical margins are
used and this introduces infinitely many nuisance parameters. This complicates the deduction of the
asymptotic distribution properties for the approaches and p-values are commonly found by simulation.
This is computationally very intensive and much effort is invested trying to solve this issue.

A simple way to build GOF approaches for multivariate random variables is to consider multi-
dimensional chi-square approaches, as in Pollard (1979), D’Agostino and Stephens (1986) and Snedecor
and Cochran (1986). The problem with these approaches, as with all binned approaches based on grid-
ding the probability space, is that they will not be feasible for high dimensional problems since the need
for data would be too great. Another issue with binned approaches is that the grouping of the data is
not trivial. Grouping too coarsely destroys valuable information and the ability to contrast distributions
becomes very limited. On the other hand, too small groups leads to highly irregular empirical cdf’s due
to the limited amount of data. For these reasons we will not consider multivariate binned approaches.

Further, a GOF approach is most useful for high-dimensional problems since these copulae are harder
to conceptualize and because the consequences of poor model choice is often much greater in higher
dimensional problems, e.g. risk assessments for high dimensional financial portfolios. For these reasons
we will not consider multidimensional KDE approaches such as the one proposed by Fermanian (2003). A
multidimensional KDE for high dimensional problems would simply be too computationally demanding.

The class of dimension reduction approaches is a better alternative. We consider the approaches
proposed by Breymann et al. (2003), Berg and Bakken (2005) and Genest et al. (2006). We supplement our
analysis with the full multivariate approach proposed by Panchenko (2005). We base all four approaches
on the PIT and some generalizations and improvements are attempted.

3.1. Dimension Reduction Approaches
We now introduce the three dimension reduction approaches. The testing procedure is given in Algorithm
3.1.
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3.1.1. Breymann, Dias and Embrechts’ Approach

The approach proposed by Breymann et al. (2003) coincides with the approach proposed by Malevergne
and Sornette (2003) when the latter is based on PIT data. It also coincides with the second approach in
Chen et al. (2004).

Let Z = (Z1, . . . , Zd) be the iid U(0, 1)d variables obtained from applying the PIT to a multivariate
data set X = (X1, . . . ,Xd). The dimension reduction is then performed as follows:

YG =
d∑

i=1

Φ−1(Zi)
2, (3.1)

where Φ−1(·) is the inverse Gaussian cdf. Since the Zi’s are iid U(0, 1) under H0, the variables Φ−1(Zi)
are iid N (0, 1). Hence YG is χ2

d distributed and we define

WG = Fχ2
d
(YG), (3.2)

which is an iid U(0, 1)n vector under H0. We have now reduced the multivariate problem to a univariate
one, and the approach G is defined as the cdf of WG:

FG(w) = P (WG ≤ w) , w ∈ [0, 1]. (3.3)

Under the null hypothesis FG(w) = w and the density function fg(w) = 1. Given n observations of the

d-dimensional vector Z, the empirical version, F̂G(w), equals:

F̂G(w) =
1

n + 1

n∑

j=1

I(WGj ≤ w), w =
1

n + 1
, . . . ,

n

n + 1
. (3.4)

Breymann et al. (2003) apply the Anderson-Darling test statistic to FG. Malevergne and Sornette (2003)
apply various cdf statistics to FG while Chen et al. (2004) proposed to use the L2 norm KDE statistic
on fg. We have generalized this so any univariate cdf or pdf test statistic may be applied to FG and fg,
respectively.

This approach is computationally very efficient. However, it has its weaknesses. First of all the
approach is not consistent, meaning that the resulting test statistic is not strictly increasing for every
deviation from the null hypothesis. Some deviations may be overlooked. The projection from a multi-
variate problem to a univariate problem through YG is what causes this inconsistency. Another feature
with this approach that may be considered a weakness is the fact that it weights the tails of the copula.
If we are not particularly interested in the fit in the tails, such a tail weighting may be undesirable.

3.1.2. Berg and Bakken’s Approach

The approach proposed by Berg and Bakken (2005) extends the approach in Breymann et al. (2003).
However, the consistency issue is solved by transforming the PIT data before the dimension reduction.
The deviance measure is also decoupled from the weighting functionality. Any weight function may be
used, enabling the weighting of any region of the copula.

Let Z = (Z1, . . . , Zd) be the iid U(0, 1)d variables obtained from applying the PIT to a multivariate
data set X = (X1, . . . ,Xd). Define a new vector Z∗ as

Z∗
i = P (ri ≤ Z̃i|r1, . . . , ri−1) =


1−

(
1− Z̃i

1− ri−1

)d−(i−1)

 , (3.5)

for i = 1, . . . , d, where Z̃ = (Z̃1, . . . , Z̃d) is the sorted counterpart of Z and ri is rank variable i1 from Z.
The dimension reduction is then performed using Z∗:

YB =

d∑

i=1

γ(Zi;α) · Φ−1(Z∗
i )2, (3.6)

1Rank variables are the observed variables, ordered ascendingly.
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where γ is a weight function used for weighting Φ−1(Z∗
i )2 depending on its corresponding value Zi, and

α is the set of weight parameters. Further let FYB
(·) be the cdf of YB, i.e. the cdf of a linear combination

of squared normal variables, found either numerically (see e.g. Farebrother (1990)) or by simulation. We
then define

WB = FYB
(YB), (3.7)

which is an iid U(0, 1)n vector under H0. The approach B is then defined as the cdf of WB :

FB(w) = P (WB ≤ w) , w ∈ [0, 1]. (3.8)

Under the null hypothesis FB(w) = w and the density function fb(w) = 1. The empirical version, F̂B(w),
equals:

F̂B(w) =
1

n + 1

n∑

j=1

I(WBj ≤ w), w =
1

n + 1
, . . . ,

n

n + 1
. (3.9)

This approach is computationally quite fast. It is slower than the approach G, due to the distribution
of the linear combination of squared normal variables. Further, the weighting functionality adds valuable
flexibility. Any weight function can be applied to any region of the copula. The fit of different specific
regions of the copula may be of special interest for different applications and may hence be weighted
more than the rest, e.g. the tails for credit risk analysis. In this paper we apply the approach B with no
weight and with power tail weight, γ(Zi;α) = (Zi − 1

2 )α, α ∈ (2, 4, . . .).
The transformation Z∗ in Equation (3.5) enables a consistent dimension reduction, without loosing

any information. The rationale behind the transformation can be explained as follows. To solve the
consistency problem of the approach G, we wish to find the probability, under H0, that the variable with
rank i, given the variables with rank 1, . . . , i − 1, will be smaller than or equal to the observed variable
with rank i, Z̃i. Hence, we wish to find P (ri ≤ Z̃i|r1, . . . , ri−1) = 1 − P (ri > Z̃i|r1, . . . , ri−1). The only

way ri can be greater than Z̃i is if all remaining d − (i − 1) variables are greater than Z̃i. Since the

remaining d− (i−1) variables are independent, the probability of all being greater than Z̃i is the product

over the probabilities of each rk, k ∈ [i, d], being greater than Z̃i:

P (Z̃i < rk < 1|rk > ri−1) =
P (rk > Z̃i ∩ rk > ri−1)

P (rk > ri−1)
=

P (rk > Z̃i)

P (rk > ri−1)
=

1− Z̃i

1− ri−1
, k ∈ [i, d].

3.1.3. Genest, Quessy and Rémillard’s Procedure

Genest et al. (2006) propose an approach for Archimedean copulae based on Kendall’s process (for an
introduction to Kendall’s process, see Barbe et al. (1996)). They utilize the empirical copula cdf for the
dimension reduction. We first shortly introduce the approach as it is presented in Genest et al. (2006),
and then we attempt some generalizations and improvements.

Original Approach

Given F as defined in Equation (2.1), the H0 copula C, with parameters θ and the observed multivariate
data set X, Genest et al. (2006) define

FK(w) = P (F (X) ≤ w) = P (C(U) ≤ w), w ∈ [0, 1]. (3.10)

Its density function is given by fk(w) = ∂FK(w)/∂w. Under the null hypothesis, FK(w) = FK,0(w),
where FK,0(w) is copula specific and must be derived for all copulae used. This can be seen by rewriting
FK(w) as

FK(w) =

∫ 1

0

. . .

∫ 1

0

I(C(u1, . . . , ud) ≤ w) c(u1, . . . , ud) du1 . . . dud, (3.11)
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where I(·) is the regular indicator function and c(u1, . . . , ud) is the copula density, which is copula specific.

The empirical version of FK(w), F̂K(w), equals

F̂K(w) =
1

n

n∑

j=1

I(F̂ (xj) ≤ w) =
1

n

n∑

j=1

I(Ĉ(uj) ≤ w), (3.12)

where uj is the j-th observation of the d-dimensional vector u, F̂ (xj) is from Equation (2.6) and Ĉ(u)
is the empirical copula cdf as defined in Equation (2.7).

Genest et al. (2006) specify some hypotheses based on
√

n(F̂K(w) − FK(w,θ)), known as Kendall’s
process. They further derive two univariate test statistics that they apply to FK(w), a CvM and a KS
statistic. Implementation of these test statistics is shown in Genest et al. (2006). The distribution of
these test statistics are, unfortunately, dependent on the null hypothesis copula. Thus, there is no simple
way of obtaining the critical values for a given level of significance α. A parametric bootstrap or Monte
Carlo simulation can be used.

Altered Approach

In its original form FK,0(w) needs to be derived for every copula, and applications to copulae that are not
Archimedean is, if possible, difficult. Using a PIT approach implies that FK,0(w) only needs to be derived
for one copula and the approach can be used for all copulae that we can PIT. We thus alter the approach
to be based on PIT data. We also improve the approach slightly by including the last observation in the
approach. This is done by altering F̂K(w) to use the denominator n + 1 instead of n to avoid F̂K(w)
reaching 1. This enables the inclusion of the last observation in the calculation of the CvM test statistic
(see Genest et al. (2006, page 11)). An issue that will also be addressed is that limw→0 fk(w)→∞, and
this discontinuity is not desirable.

As before let Z be the uniformly and independently distributed variables on [0, 1]d, obtained from
applying the PIT to the multivariate data set X. The approach K is then defined as the cdf of the copula:

FK(w) = P (C(Z) ≤ w), w ∈ [0, 1], (3.13)

and its density function equals fk(w) = ∂FK(w)/∂w.

The empirical version of FK(w), F̂K(w), equals:

F̂K(w) =
1

n + 1

n∑

j=1

I
(
Ĉ(zj) ≤ w

)
, w =

1

n + 1
. . . ,

n

n + 1
, (3.14)

where zj is observation number j of the d-dimensional vector Z.
For Archimedean copulae, FK(w) is on the form:

FK(w, θ) = w +

d−1∑

i=1

(−1)i

i!
ϕ(w)i di

dxi
ϕ−1(x)

∣∣∣∣
x=ϕ(w)

, (3.15)

where ϕ(w) is the copula generator function (see e.g. Nelsen (1999) for the definition of the copula
generator function) and ϕ−1(x) is the inverse copula generator function.

Since Z is independent under the null hypothesis, FK(w) will be on the form:

FK(w) = P (C(Z) ≤ w) = w + w
d−1∑

i=1

(−1)i

i!
ln(w)i = 1− Γl(− ln(w), d)

Γ(d)
, (3.16)

where Γl(·) is the lower incomplete gamma function, defined as Γl(x, a) =
∫ x

0
ta−1 exp(−t)dt. This can

be proved by insertion of e.g. the Clayton or the Gumbel generator function into Equation (3.15), with
the parameter value corresponding to independence.



Copula Goodness-of-fit Tests 9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w

K
(d

,θ
) d=5, θ=1

d=5, θ=12
d=20, θ=1
d=20, θ=12

Figure 3.1. FK(w) for the Gumbel copula.

For large d, the distribution of Equation (3.16) quickly approaches a unit step function at w = 0 and
makes FK(w) useless for testing. See Figure 3.1 for θ = 1 for illustration. To counter this problem and
obtain a more linear univariate distribution, the PIT data set can be transformed to a distribution with
upper tail dependence (to increase the probability of (Uj1 ≥ u1, . . . , Ujd ≥ ud)) and a known FK,0(w).
The most apparent choice is the Gumbel copula, since it is on a simple parametric form and is an
Archimedean copula with upper tail dependence2. Using the transformed data, FK(w) becomes usable.
Figure 3.1 shows how FK(w) approaches the uniform distribution for increasing θ. Note that θ = 1
corresponds to the independent copula.

Next we need to find an expression for FK,0 for a Gumbel dependence structure. FK,Gumbel(w) is
found by insertion of ϕ(w) = (− lnw)θ and ϕ−1(x) = exp

(
−x1/θ

)
into Equation (3.15). It can be shown

(Appendix A.2) that the i’th derivative of φ−1(x) can be written as:

diϕ−1(x)

dxi
= ξi(x)

dϕ−1(x)

dx
, (3.17)

where

ξi(x) = ξ2(x) · ξi−1(x) + ξ
(1)
i−1(x), i ≥ 2, (3.18)

ξ
(j)
i (x) = ξ

(j+1)
i−1 (x) +

j∑

m=0

( j
m) ξ

(m)
2 (x)ξ

(j−m)
i−1 (x), j ≥ 0, (3.19)

2This transformation is, however, not trivial. The popular algorithm for compound constructions of copulae
suggested by Marshall and Olkin (1988), for simulating from an Archimedean copula, can not be used since it
uses d+1 variables to simulate a d-dimensional copula. Here, a rather slow simulation procedure from Embrechts
et al. (2003) was applied (see Appendix A.1 for an algorithm). In addition, a general expression for FK,Gumbel(w)
is not on a simple form and must be found using a complicated, recursive calculation procedure.
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and

ξ
(j)
2 (x) =

(−1)j

xj+1

(
x

1
θ

j∏

m=0

(
j − 1

θ

)
−
(

1− 1

θ

)
j!

)
, j ≥ 0. (3.20)

Here, superscript (j) indicates the j’th derivative. It can be shown (Appendix A.2) that by computing
the first d− 3 derivatives of ξ2(x), all ξi, i = 2, . . . , d− 1, can be found.

The issue of limw→0 fk(w) → ∞ is countered by replacing the approach K with a slightly altered

approach M . By applying the inverse function F−1
K (w) to the empirical results F̂K(w), a uniform dis-

tribution is obtained. Let the function F−1
K (x) be a function that solves FK(w) = x with respect to w.

This function must be evaluated numerically. The approach M can be considered to be a generalization
of the approach K and is defined as:

FM (w) = FK(F−1
K (w)), w ∈ [0, 1]. (3.21)

Under the null hypothesis FM (w) = w and the density function fm(w) = 1. The empirical version,

F̂M (w), equals:

F̂M (w) =
1

n + 1

n∑

j=1

I(FK(Ĉ(zj)) ≤ w), w =
1

n + 1
, . . . ,

n

n + 1
. (3.22)

The expression for F̂M (w) was derived by noting that

F̂M (w) = F̂K(F−1
K (w)) =

1

n + 1

n∑

j=1

I(Ĉ(zj) ≤ F−1
K (w))

=
1

n + 1

n∑

j=1

I(FK(Ĉ(zj)) ≤ w).

The approach M is quite slow due to the Gumbel transform and the numerical inversion of FK .
Further, the approach implicitly weight small values, i.e. values close to zero, the left tail. This can be
proven as follows. Consider the independent random vector z. The empirical copula of this independent
vector is defined as Ĉ(z) =

∏d
i=1 zi. Suppose we add a small perturbation, ∆, to an arbitrary value zk:

Ĉ(∆z) = z1 · · · (zk + ∆) · · · zd = Ĉ(z) + ∆

d∏

i=1,i 6=k

zi = Ĉ(z) + ∆
Ĉ(z)

zk
. (3.23)

Now the ratio Ĉ(∆z)/Ĉ(z) = 1 + ∆/zk is a decreasing function of zk. Hence, the approaches K and
M have a left tail bias. What this means is that a deviation from H0 will have a greater effect on the
approach K/M for small values close to zero than for high values close to one. However, this bias can
be reduced by increasing the upper tail dependency, i.e. by increasing θ in the infliction of a Gumbel
dependency structure. As θ −→ ∞ we obtain perfect dependence and the perturbation ∆ will have no
effect.

3.2. Full Multivariate Approach
To supplement the three dimension reduction approaches above, we also consider the full multivariate
approach proposed by Panchenko (2005). The dimension reduction approaches is a two stage approach,
first the problem is reduced to a univariate problem, second a univariate test statistic is applied. In
contrast, the full multivariate approach is a test in itself, testing the entire data set in one step. Thus
any further unification of the framework, beyond the use of PIT data, is not sensible.
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Panchenko (2005) proposes an approach based on positive definite bilinear forms. Let f1 and f2 be
two integrable functions and define the bilinear form as

〈f1|κd|f2〉 =

∫ ∫
κd(x1,x2)f1(x1)f2(x2)dx1dx2, (3.24)

where x1, x2 ∈ R
d are two random vectors and κd(·, ·) is a positive definite symmetric kernel such as the

Gaussian kernel:

κd(x1,x2) = exp
{
−‖x1 − x2‖2/(2dh2)

}
, (3.25)

where ‖ · ‖ denotes the Euclidean norm in R
d and h > 0 is a bandwidth. The Gaussian kernel is chosen

for convenience. In general, other positive definite kernels may be chosen.
Next, define the squared distance Q between f1 and f2 as

Q = 〈f1 − f2|κd|f1 − f2〉 . (3.26)

It follows from a theorem (Diks and Tong, 1999) that Q becomes zero only when f1(·) and f2(·) are equal.
In fact, 〈f1|κd|f2〉 is an inner product of f1 and f2, which can be used as a measure of distance between
f1 and f2. Using the properties of an inner product, Q can be decomposed as follows

Q = Q11 − 2Q12 + Q22, (3.27)

where Qkp = 〈fk|κd|fp〉. Panchenko (2005) estimates each term of the above decomposition using V-
statistics (see Denker and Keller (1983) for an introduction to U- and V-statistics):

Q̂kp =
1

n2

n∑

jk=1

n∑

jp=1

κd(X
jk

k ,Xjp
p ), (3.28)

where X
j
k denotes observation number j of the random vector Xk.

This approach is quite slow since it loops through all n× d observations. Further, it does not weight
any region of the copula. It is a simple approach in the sense that one does not have to bother with which
univariate statistic to use. This can however also be regarded a lack of flexibility and thus a drawback.

3.3. Summary
We have examined four copula GOF approaches, Breymann et al. (2003), Berg and Bakken (2005) and
Genest et al. (2006), all dimension reduction approaches, and finally the full multivariate approach by
Panchenko (2005). We denote the approaches G, B, K and Q, respectively. We altered the approach K
to fit it into our framework and to generalize, introducing the approach M .

The approaches solve the dimension reduction in different ways and thus the deviances from H0 are
computed differently. When it comes to numerical efficiency there is no doubt that the approach G is
by far the quickest approach. The approach B is somewhat slower while approaches M and Q are quite
slow compared to the first two. The approaches also weight different regions of the copula. The approach
G implicitly weights the tails of the copula, the approach B allows any weighting of any region of the
copula while the approach K or M weights the left tail of the copula. The weighting is incorporated in
the dimension reduction technique and is thus independent of which univariate test statistic we use. The
full multivariate approach Q does not allow for any weighting.

Breymann et al. (2003) chose to neglect the issue of empirical margins mentioned in Section 3 and
applied a straightforward version of the AD statistic. However, preliminary tests we have undertaken
shows significant differences in the p-values obtained from their approach and through simulation. Chen
et al. (2004) derives an asymptotic expression for their L2 norm KDE statistic. However, we are highly
uncertain about the validity of this result. Simulation experiments do not confirm their asymptotic
distribution and an error was found in the proof of the mean of the distribution.
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We simulate the distribution of the test statistics by repeatedly looping through the entire testing
procedure under H0. This ensures that we use the correct distribution when computing p-values. We
simulate N = 10000 times. The minimum number of simulations required to obtain a certain confidence
level can be deduced using well-known techniques.

The testing procedure is the same for the three dimension reduction approaches, only differing in the
dimension reduction technique, i.e. in the calculation of FT (w), where T is G, B or M . For the full
multivariate approach the testing procedure is somewhat different.

Algorithm 3.1 Testing procedure for the dimension reduction approaches

1: Construct the copula Z by applying the PIT to the observed data set X, given a H0 copula.
2: Compute F̂T (w) according to Equations (3.4), (3.9) or (3.22) respectively.

3: Compute some univariate test statistic T̂ using F̂T (w) according to Equations (2.8)-(2.16).
4: Repeatedly (N times) perform steps 1-4, using a simulated observed data set X∗, simulated from the

H0 distribution. The resulting N values of T̂ ∗ form the distribution of T .

5: Compute the p-value, p =
1+
PN

i=1
I(bT ∗

i ≥bT )

N+1 .

Algorithm 3.2 Testing procedure for the full multivariate approach proposed by Panchenko (2005).

1: Construct the copula Z by applying the PIT to the observed data set X, given a H0 copula.
2: Compute Q̂ according to Equations (3.26)-(3.28).
3: Repeatedly (N times) perform steps 1-2, using a simulated observed data set X∗, simulated from the
H0 distribution, with parameters estimated from the original observed data set X. The resulting N
values of Q̂∗ form the distribution of Q.

4: Compute the p-value, p =
1+
PN

i=1
I( bQ∗

i ≥
bQ)

N+1 .

4. Results

We assess the statistical power of the approaches G, B, M and Q by performing mixing tests. The
approach K in its original form is not included since we are not able to derive an expression for FK,0(w)
for the Gaussian copula. The mixing tests give us an impression of the approaches’ ability to detect tail
heaviness and skewness properties. The ability to distinguish the Gaussian from the Student’s t copula
indicates the power at detecting tail heaviness, while the ability to distinguish the Gaussian from the
Clayton- and survival Clayton copula indicates the power at detecting skewness. The mixing tests are
performed by mixing a Gaussian copula (ρ = 0.5) with an alternative copula to construct a mixed copula
CMix:

CMix = (1− β) · CGa + β · CAlt, β ∈ [0, 1],

where β is the mixing parameter, CGa denotes the Gaussian copula and CAlt denotes the alternative
copula. In this paper the alternative copulae considered are:

• CSt: the Student’s t copula (ρ = 0.5, ν = 4),

• CCl: the one-parameter Clayton copula (δ = 1.0),

• CsCl: the one-parameter survival Clayton copula (δ = 1.0).

For β = 0, CMix is a Gaussian copula while for β = 1, CMix is the alternative copula. For 0 < β < 1 we
sample from the Gaussian copula with probability (1−β) and from the alternative copula with probability
β. Our null hypothesis is that the mixed copula is a Gaussian copula. We PIT CMix under this null
hypothesis and compute T̂ and the corresponding p-value. This is repeated 500 times in order to obtain
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rejection rates and corresponding power curves. This relatively low number of repetitions is why the
power curves in Figures 4.1, 4.2 and 4.3 are not smoother.

First, we examined the effect of dimension and number of observations. For the approach B, the
power of the approach increases with number of observations n and with dimension d, as expected. n
has the same effect on all four approaches and all univariate test statistics. Next, also as expected, d has
the same effect for all approaches, most prominent for G and B. For M and Q this effect is not so clear.

Next, we examined the various univariate test statistics. The KSAD statistic performed remarkably
well in several cases. However, when examining all approaches and combinations of n, d and CAlt, the
KSAD statistic seems quite unstable in the sense that the rejection rate in some cases does not increase
smoothly with β and in some few cases it performs quite poor. The AD statistic also performs well, in all
cases. In addition, the AD statistic seems more stable than the KSAD statistic. Thus, the AD statistic
seems to be the best performing statistic for our use. Our beliefs in Section 2.4 are thus confirmed. We
only consider the AD statistic in the remains of the paper.

Finally, we turn to the performance of the various copula GOF approaches. We examine the power,
using the AD statistic, for the approaches G, B and M . The results are displayed in Figures 4.1, 4.2 and
4.3. We see that it varies with n, d and CAlt, which approach has the best power. However, some general
conclusions can be made:

• For CAlt = CSt the approach G performs very well. We believe this is due to its implicit tail weight-
ing. Similarly, we see that the approach B with power tail weight performs very well, increasingly
well as the tail weight is increased.

• For CAlt = CCl and CAlt = CsCl the approaches M and Q perform very well for d = 2. For d > 2
they do not perform that well while B performs very well. G does not perform so well for these
alternative copulae, this is due to the inconsistency of this approach.

• For CAlt = CsCl and d = 5 and 10, the approach M performs very poor. This is probably due to
the implicit left tail weighting. As we know, the survival Clayton copula has upper tail dependence.

• For some combinations of n, d and CAlt, mainly for low values of n, and at some β levels, the
rejection rate for the approach M decreases as β is increased. So it seems like the approach M
suffers more from few observations than the other approaches. We have no explanation for this
phenomenon as of now.

• For d = 5 and d = 10 the approach B outperforms the other tests.

5. Conclusion

We have compared the copula GOF approaches by Breymann et al. (2003), Berg and Bakken (2005),
Genest et al. (2006) and Panchenko (2005). All four are fitted into a PIT framework and some gener-
alizations and improvements are made. Three of the approaches project the multivariate problem to a
univariate problem, and then apply a univariate test. We have examined the most popular univariate
tests. Further we have examined the power of the GOF approaches at distinguishing tail heaviness and
skewness properties.

The best performing approach varies with the alternative copula in the mixing process, as well as
the dimension and the number of observations. The results are similar for all univariate statistics. Some
concluding remarks:

• G: Tail weight. Quick to compute and very well suited for tail heaviness testing. Performs rather
poor for skewness testing. Not consistent.

• M : Left tail weight. Performs very well in the bivariate case with a high number of observations,
not so well for higher dimensions and seems unstable for few observations. Performs very poor
at detecting upper tail dependence for higher dimensions. Computationally demanding in our
framework.
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(a) CAlt = CSt, d = 2, n = 500.
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(b) CAlt = CSt, d = 2, n = 2500.
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(c) CAlt = CSt, d = 5, n = 500.
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(d) CAlt = CSt, d = 5, n = 2500.
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(e) CAlt = CSt, d = 10, n = 500.
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(f) CAlt = CSt, d = 10, n = 2500.

Figure 4.1. Power curves for all copula GOF approaches, d = (2, 5, 10), n = (500, 2500), CAlt = CSt. For G, B

and M the AD statistic is used. On the x-axis we see the mixing parameter β, while on the y-axis we see the portion
of times the Gaussian copula (i.e. the H0 copula) is rejected, with a 5% significance level.



Copula Goodness-of-fit Tests 15

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

R
ej

ec
tio

n 
R

at
e

G
Q
M
B
B(α=4)
B(α=10)

(a) CAlt = CCl, d = 2, n = 500.
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(b) CAlt = CCl, d = 2, n = 2500.
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(c) CAlt = CCl, d = 5, n = 500.
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(d) CAlt = CCl, d = 5, n = 2500.
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(e) CAlt = CCl, d = 10, n = 500.
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(f) CAlt = CCl, d = 10, n = 2500.

Figure 4.2. Power curves for all copula GOF approaches, d = (2, 5, 10), n = (500, 2500), CAlt = CCl. For G,
B and M the AD statistic is used. On the x-axis we see the mixing parameter β, while on the y-axis we see the
portion of times the Gaussian copula (i.e. the H0 copula) is rejected, with a 5% significance level.



16 D.Berg, H.Bakken

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

R
ej

ec
tio

n 
R

at
e

G
Q
M
B
B(α=4)
B(α=10)

(a) CAlt = CsCl, d = 2, n = 500.
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(b) CAlt = CsCl, d = 2, n = 2500.
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(c) CAlt = CsCl, d = 5, n = 500.
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(d) CAlt = CsCl, d = 5, n = 2500.
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(e) CAlt = CsCl, d = 10, n = 500.
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(f) CAlt = CsCl, d = 10, n = 2500.

Figure 4.3. Power curves for all copula GOF approaches, d = (2, 5, 10), n = (500, 2500), CAlt = CsCl. For G,
B and M the AD statistic is used. On the x-axis we see the mixing parameter β, while on the y-axis we see the
portion of times the Gaussian copula (i.e. the H0 copula) is rejected, with a 5% significance level.
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• Q: No weight. Performs very well for skewness testing in the bivariate case. Not so strong for higher
dimensions or for tail heaviness testing. A simple test in the sense that we do not have to bother
with which univariate statistic to use. However, this can also be considered a lack of flexibility. No
weighting flexibility, and the test is computationally demanding.

• B: Any weight. Adds valuable weighting flexibility, and with the appropriate weight, both tail
heaviness and skewness performance is very good. Superior for higher dimensions. The approach
is computationally more demanding than the approach G, but less demanding than the approaches
M and Q.

Based on the above we give the following recommendations. Note that the results and recommen-
dations are based on the particular mixing tests that we performed and should thus be interpreted as
indications.

• If you have no prior opinion on which part of the copula that may deviate from H0, then use Q for
bivariate problems and B with no weighting for higher dimensions.

• If you wish to emphasize the tails of the copula, use G or B with power tail weight.

• If you wish to emphasize other regions, i.e. one of the tails only, use Q in bivariate problems and
B for higher dimensions.

• Tests based on binning or smoothing are also of interest in the bivariate case.

Further work should be done to better understand the approach M and its properties. Also, work
remains in understanding the effect of weighting various regions of the copula. How does the fact that
M weights the left tail influence its power for various alternative copulae? And plenty of work remains
testing various weight functions for B and their influence. Finally, does the order in which we PIT the
data significantly effect the p-values?
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Sklar, A. (1959). Fonctions dé repartition á n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8,
299–231.

Snedecor, G. and W. Cochran (1986). Statistical Methods, Volume 8. Iowa State University Press.

Thompson, S. B. (2002). Evaluating the goodness of fit of conditional distributions, with an application
to affine term structure models. Working paper, Department of Economics, Harvard University.



20 D.Berg, H.Bakken

A. Gumbel K

In order to fit the approach by Genest et al. (2006) into the PIT framework, as done in Section 3.1.3, we
need to impose a dependency structure on the PIT data, preferably one with upper tail dependence. The
Gumbel copula is a natural choice for this purpose. In order to do this successfully we need an approach
for sequential sampling from the Gumbel copula, e.g. the approach described in Embrechts et al. (2003,
Section 6). When we have transformed the data into a data set with Gumbel dependency structure we
need to compute FK(w) for this data. I.e. we need to derive an expression for FK,Gumbel(w).

A.1. Gumbel Transformation
To convert the PIT data set Z, into a data set U, with Gumbel dependency structure, the appropriate
algorithm can be derived from Embrechts et al. (2003, Algorithm 6.1, Section 6.5), using C(u1, u2, u3) =
C(C(u1, u2), u3) and C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)), where φ(w) = (− ln w)θ is the Gumbel copula
generator function. We also utilize the function FK,C(w) = w − φ(w)/φ′(w), which is equal to Equation
(3.15) for d = 2. The inverse, F−1

K,C must be found numerically, e.g. by bisection.

Algorithm A.1 Gumbel transformation

1: for j ← 1, n do

2: t = F−1
K,C(Zj,1)

3: for i← 2, d do

4: s = Zj,i

5: a = ϕ−1(sϕ(t))
6: Uj,i−1 = ϕ−1((1− s)ϕ(t))
7: t = F−1

K,C(a)
8: end for

9: Uj,d = a
10: end for

A.2. FK,Gumbel

The expression for FK,Gumbel basically involves deriving an expression for di

dxi ϕ
−1(x). Remember that

for the Gumbel copula ϕ(w) = (− log w)θ and ϕ−1(x) = exp
(
−x1/θ

)
.

We start with Equations (3.17) and (3.18):

d

dx
ϕ−1(x) =− 1

θ
x1/θ−1 · ϕ−1(x),

d2

dx2
ϕ−1(x) =

[(
1

θ
− 1

)
x−1 − 1

θ
x1/θ−1

]
· d

dx
ϕ−1(x) = ξ2(x) · d

dx
ϕ−1(x)

d3

dx3
ϕ−1(x) =

[
ξ2(x)ξ2(x) + ξ

(1)
2 (x)

]
· d

dx
ϕ−1(x) = ξ3(x) · d

dx
ϕ−1(x)

...

di

dxi
ϕ−1(x) =ξi(x)

d

dx
ϕ−1(x),

where

ξi(x) =ξ2(x)ξi−1(x) + ξ
(1)
i−1(x).



Copula Goodness-of-fit Tests 21

Let us continue by showing Equation (3.19):

ξ
(1)
i (x) =ξ

(1)
2 (x)ξi−1(x) + ξ2(x)ξ

(1)
i−1(x) + ξ

(2)
i−1(x)

ξ
(2)
i (x) =ξ

(2)
2 (x)ξi−1(x) + 2ξ

(1)
2 (x)ξ

(1)
i−1(x) + ξ2(x)ξ

(2)
i−1(x) + ξ

(3)
i−1(x)

ξ
(3)
i (x) =ξ

(3)
2 (x)ξi−1(x) + 3ξ

(2)
2 (x)ξ

(1)
i−1(x) + 3ξ

(1)
2 (x)ξ

(2)
i−1(x) + ξ2(x)ξ

(3)
i−1(x) + ξ

(4)
i−1(x)

...

ξ
(j)
i (x) =ξ

(j+1)
i−1 (x) +

j∑

m=0

( j
m) ξ

(m)
2 (x)ξ

(j−m)
i−1 (x).

Next, we show Equation (3.20):

ξ2(x) =x−1

[
1

θ

(
1− x

1
θ

)
− 1

]

ξ
(1)
2 (x) =

d

dx
ξ2(x) = (−1)2

(
1− 1

θ

)
x−1 + (−1)2 · 1

θ
·
(

1− 1

θ

)
· x 1

θ
−2

ξ
(2)
2 (x) =(−1)3 · 2 ·

(
1− 1

θ

)
· x−3 + (−1)3 · 1

θ
·
(

1− 1

θ

)(
2− 1

θ

)
· x 1

θ
−3

...

ξ
(j)
2 (x) =

(−1)j

xj+1

[
x

1
θ

j∏

m=0

(
m− 1

θ

)
−
(

1− 1

θ

)
· j!
]

.

Now, since

FK(w) = w +

d−1∑

i=1

(−1)i

i!
ϕ(w)i di

dxi
ϕ−1(x)

∣∣∣∣
x=ϕ(w)

,

we only need to compute the d−1 first derivatives of ϕ−1(x), which mainly consists of computing ξd−1(x),
according to Equation (3.17). Before we compute ξd−1(x) we derive an alternative expression for ξi(x):

ξi(x) =ξ2(x)ξi−1(x) + ξ
(1)
i−1(x)

=ξ2(x)
(
ξ2(x)ξi−1(x) + ξ

(1)
i−2

)
+ ξ

(1)
i−1

=ξ3
2(x)ξi−3(x) + ξ2

2(x)ξ
(1)
i−3(x) + ξ2(x)ξ

(1)
i−2(x) + ξ

(1)
i−1(x)

...

=ξi−1
2 (x) +

i−2∑

m=1

ξm−1
2 (x)ξ

(1)
i−m(x). (A.1)

Using Equation (A.1) we have that ξd−1(x) = ξd−2
2 (x)+

∑d−3
m=1 ξm−1

2 (x)ξ
(1)
d−1−m(x). The only part involv-

ing the derivatives of ξ2(x) is ξ
(1)
d−1−m(x). For m = 1 we have ξ

(1)
d−2(x) which will be the part involving

the most derivations of ξ2(x):

ξ
(1)
d−2(x) =ξ

(2)
d−3(x) + . . .

=ξ
(3)
d−4(x) + . . .

...

=ξ
(d−3)
d−(d−2)(x) = ξ

(d−3)
2 (x) + . . .
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I.e. we only have to compute the first d−3 derivatives of ξ2(x) in order to compute all ξi, i = 2, . . . , d−1.

We encounter numerical problems for large d. When x becomes very small, ξ
(j)
2 (x), and thus ξi(x),

becomes extremely large. This problem is countered by observing that ξ
(j)
i (x) is proportional to x1−j−i.

This can be showed by induction. We start with i = 3, showing that ξ
(j)
3 (x) ∝ x−j−2:

ξ
(j)
3 (x) =ξ

(j+1)
2 (x) +

j∑

m=0

( j
m) ξ

(m)
2 (x)ξ

(j−m)
2 (x),

where

ξ
(j+1)
2 (x) =

(−1)j+1

xj+2

[
x

1
θ

j+1∏

m=0

(
m− 1

θ

)
−
(

1− 1

θ

)
(j + 1)!

]
.

Hence ξ
(j+1)
2 (x) ∝ x−j−2. Further, ξ

(m)
2 (x) ∝ x−m−1 and ξ

(j−m)
2 (x) ∝ x−j+m−1. Hence ξ

(m)
2 (x)ξ

(j−m)
2 (x) ∝

x−j−2, and we have showed that ξ
(j)
3 ∝ x−j−2. Next we show that ξ

(j)
i (x) ∝ x1−j−i implies that

ξ
(j)
i+1(x) ∝ x−j−i:

ξ
(j)
i+1(x) = ξ

(j+1)
i (x) +

j∑

m=0

( j
m) ξ

(m)
2 (x)ξ

(j−m)
i (x),

where ξ
(m)
2 (x) ∝ x−m−1, and ξ

(j−m)
i (x) ∝ x1−j+m−i. Hence ξ

(m)
2 (x)ξ

(j−m)
i (x) ∝ x−j−i, and since

ξ
(j)
i (x) ∝ x1−j−i, we have showed that ξ

(j)
i+1(x) ∝ x−j−i.

We have now showed that ξ
(j)
i (x) is proportional to x1−j−i. This makes ξi(x) proportional to x1−i,

which is shown using Equation (A.1):

ξi(x) = ξi−1
2 (x) +

i−2∑

m=1

ξm−1
2 (x)ξ

(1)
i−m(x),

where ξi−1
2 (x) ∝ x1−i, ξm−1

2 (x) ∝ x1−m and ξ
(1)
i−m(x) ∝ xm−i. Hence ξm−1

2 (x)ξ
(1)
i−m(x) ∝ x1−i and

ξi(x) ∝ x1−i. Now, since ξi(x) is proportional to x1−i, d
dxϕ−1(x) is also proportional to x1−i. In

Equation (3.15), x = ϕ(w) and the proportionality factor x1−i cancels out with ϕ(w)i and becomes
ϕ(w).

B. Empirical Univariate GOF Test Statistics

We derive the expressions for the empirical statistics treated in Section 2.4.
The proof of the KS statistic in Equation (2.12) is simple. Since the cdf F̂ (z) is a discrete step function

and F (z) is a strictly increasing function, the optimal z is restricted to F (j/(n + 1)) for j = 1, . . . , n.
Further, F (j/(n + 1)) = j/(n + 1). The parameter i is needed due to the discrete form of the empirical

distribution, F̂ (z) has two values at each step and both can be the maximum.
The proof of the KSAD statistic in Equation (2.15) is analogous to the proof of the KS statistic.

However, for the KSAD statistic, to avoid nulldivision, i can not equal 1 when j = n.
The proof for the CvM (Equation (2.13)) statistic is slightly more complicated. Since the empirical

cdf F̂ (z) is a step function and F (z) = z, T CvM from Equation (2.9) becomes:

T CvM =n

∫ 1

0

(
F̂ (z)− F (z)

)2

dF (z)

=n

∫ 1

0

(
F̂ (z)− F (z)

)2

dF (z)

=n

∫ 1

0

F̂ (z)2dF (z)− 2n

∫ 1

0

F̂ (z)F (z)dF (z) + n

∫ 1

0

F (z)2dF (z).



Copula Goodness-of-fit Tests 23

Since F̂ (z) is constant and equal to F̂ (j/(n + 1)) between j/(n + 1) and (j + 1)/(n + 1) for j = 1, . . . , n,
the first two integrals can be split into n smaller integrals:

T̂ CvM =n

n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)

F̂

(
j

n + 1

)2

dF (z)

−2n

n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)

F̂

(
j

n + 1

)
F (z)dF (z) + n

[
1

3
F (z)3

]1

0

=n

n∑

j=1

F̂

(
j

n + 1

)2 [
F (z)

](j+1)/(n+1)

j/(n+1)

−n

n∑

j=1

F̂

(
j

n + 1

)[
F (z)2

](j+1)/(n+1)

j/(n+1)

+
n

3

=
n

3
+ n

n∑

j=1

F̂

(
j

n + 1

)2{
j + 1

n + 1
− j

n + 1

}

−n

n∑

j=1

F̂

(
j

n + 1

){(
j + 1

n + 1

)2

−
(

j

n + 1

)2
}

=
n

3
+

n

n + 1

n∑

j=1

F̂

(
j

n + 1

)2

− n

(n + 1)2

n∑

j=1

(2j + 1)F̂

(
j

n + 1

)

To prove the empirical AD statistic (Equation (2.14)) we proceed in the same manner as for the CvM
statistic:

T AD =n

∫ 1

0

(
F̂ (z)− z

)2

z(1− z)
dF (z)

=n
n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)

(
F̂
(

j
n+1

)
− j

n+1

)2

j
n+1

(
1− j

n+1

) dF (z)

=n

n∑

j=1

(
F̂
(

j
n+1

)
− j

n+1

)2

j
n+1

(
1− j

n+1

)
[
F (z)

](j+1)/(n+1)

j/(n+1)

=
n

n + 1

n∑

j=1

(
F̂
(

j
n+1

)
− j

n+1

)2

j
n+1

(
1− j

n+1

) .


