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Abstract. Goodness-of-fit testing for copulae recently emerged as a challenging inferential problem and some
approaches have been proposed. We investigate such an approach based on the conditional probability inte-
gral transformation. This approach implicitly weights observations at corners and edges of the unit hypercube
which makes it very powerful at detecting tail heaviness for large sample sizes. However, it is shown to per-
form rather poor for small sample sizes. We propose a generalization that allows for any weighting, making
it more robust and more powerful for small sample sizes. Another weakness is that some deviations from
the null hypothesis may be neglected. We show an example and propose an extension. The original ap-
proach is shown to be a special case of our generalized and extended approach. Results from extensive
Monte Carlo experiments show that the our approach keeps prescribed levels well and that certain weighting
schemes produce superior power for three alternative hypotheses and for various combinations of problem
dimension and sample size. The margins are treated as unknown nuisance parameters and are replaced by
their empirical distribution functions. In addition, since we are testing a parametric null hypothesis requiring
parameter estimation, a parametric bootstrap procedure is required to obtain reliable p-value estimates. Ap-
plied to daily log-returns of collections of large cap stock portfolios the Gaussian- and one-parameter Clayton-
and Gumbel copulae are all strongly rejected, increasingly so for increasing dimension and sample size. The
Student’s t copula on the other hand, provides a good fit, indicating the presence of tail dependence in the
daily log-returns of stock data.

Keywords: Copula, goodness-of-fit, conditional probability integral transformation, order statistic, parametric
bootstrap

1. Introduction

Copulae have proved to be a very useful tool in the analysis of dependency structures. The concept of
copulae was introduced by Sklar (1959), but was first used for financial applications by Embrechts et al.
(1999). Since then we have seen a tremendous increase of copula related research and applications. The
limitation of the copula approach is the lack of a recommended way of checking whether the dependency
structure of a data set is appropriately modeled by a chosen family of copulae. Information criterions,
such as Aikaike’s Information Criterion (AIC), are commonly employed for model selection. Such pure
model selection criterions do not provide us with any understanding of the size of the decision rule
employed, nor its power. This means that one can not say how well the selected family of copulae fits the
data. Neither can we say whether one family of copulae fits the data significantly better than another.
A goodness-of-fit (gof) approach on the other hand, will provide this information.

Copula gof testing recently emerged as a challenging inferential problem and some approaches have
been proposed. Genest et al. (1995) assess the fit of bivariate Archimedean copulae. Shih (1998), Glidden
(1999) and Cui and Sun (2004) test the Clayton model (also referred to as the gamma frailty model in
survival analysis). Breymann et al. (2003), Chen et al. (2004) and Dobrić and Schmid (2007) apply
the conditional probability integral transformation (cpit) and tests for independence. Malevergne and
Sornette (2003) compare the empirical distribution of the data with a χ2-distribution using a bootstrap
method, testing the Gaussian copula hypothesis for financial asset dependencies. Fermanian (2005)
approximates the underlying probability density function by kernel smoothing of the empirical density.
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Scaillet (2005) propose a test statistic based on the integrated squared difference between kernel estimators
of the copula density and the parametric copula density. Dobrić and Schmid (2005) propose a chi-squared-
and a likelihood ratio test, both based on partitioning the probability space. Panchenko (2005) focuses on
positive definite bilinear forms, while Genest and Rémillard (2005) compare the empirical copula function
to the parametric, null hypothesis copula function. Savu and Trede (2004) and Genest et al. (2006) assess
the cumulative distribution function (cdf) of the copula function. Finally, Genest et al. (2007) propose
an approach based on the cpit and the copula function.

We will consider in more detail the approach proposed by Breymann et al. (2003), based on the cpit and
henceforth denoted the cpit-approach. The cpit, also known as Rosenblatt’s transformation, transforms
a set of dependent variables into a set of independent variables, given the multivariate distribution.
Breymann et al. (2003) perform a cpit under a parametric null hypothesis copula. Then they employ a
dimension reduction technique to the d-variate cpit copula and compute a univariate test statistic on the
resulting univariate vector. Their dimension reduction strongly weights data along the boundaries of the
cpit copula, i.e. corners and edges of the d-dimensional unit hypercube. This makes it less robust for
small sample sizes. We generalize the cpit-approach to allow for any weight function in the dimension
reduction. In addition, the dimension reduction is not consistent in the sense that some deviations
from the null hypothesis may be neglected. We show an example and propose an extension using an
additional cpit, based on order statistics. Our generalized and extended approach is henceforth denoted
the cpit2-approach.

The paper is organized as follows. Section 2 presents preliminaries. In Section 3 we introduce copula
gof testing, the cpit-approach and our cpit2-approach. In Section 4 we present the results from an
extensive Monte Carlo study under several weighting schemes. The study visualizes the size and power
of the cpit2-approach in distinguishing the Gaussian copula from the Student’s t-, Clayton- and Gumbel
copulae under various dimensions and sample sizes. In Section 5 we apply the best performing weighting
scheme to analyze the dependence structure of the daily log-returns of some large cap stock portfolios.
Finally, Section 6 summarizes our results and concludes.

2. Preliminaries

2.1. Empirical Marginals
Suppose we have n samples of the d-variate vector X = (X1, . . . , Xd). This vector comes from a population
with unknown margins and linking copula C. We wish to test the hypotheses that the linking copula
belongs to some parametric copula family Cθ:

H0 : C ∈ {Cθ; θ ∈ Θ} vs. Ha : C /∈ {Cθ; θ ∈ Θ}.

To extract the copula we transform the vector X into a pseudo-vector Z, through the empirical marginal
distribution functions, Zj = (Zj1, . . . , Zjd) = (F̂1(Xj1), . . . , F̂d(Xjd)), j = 1, . . . , n, where

F̂i(x) =
1

n + 1

n∑

j=1

I{Xji ≤ x}. (1)

Equivalently, the pseudo-vector can be expressed in terms of normalized ranks,

Zj = (Zj1, . . . , Zjd) =
(

Rj1

n + 1
, . . . ,

Rjd

n + 1

)
, j = 1, . . . , n. (2)

Here Rji is the rank of Xji in X1i, . . . , Xni.

2.2. Anderson-Darling test statistic
Suppose we have a random vector W = (w1, . . . , wn) which is iid U(0, 1)n and that the cdf of W is
F (w) = w. The AD statistic is then defined as

T = n

∫ {
F̂ (w)− w

}2

w(1− w)
dw, w ∈ [0, 1]. (3)
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The AD statistic strongly weights deviations near w = 0 and w = 1. This is justified since the exper-
imental deviations are small here due to the constraints {F̂ (w) − F (w)} = 0 at w = (0, 1) (Aslan and
Zech, 2002).

The empirical version of the AD statistic for uniform variables can be shown to be (Marsaglia and
Marsaglia, 2004):

T̂ = −n− 1
n

n∑

j=1

(2j − 1)
{

ln
[
F̂

(
j

n + 1

)]
+ ln

[
1− F̂

(
n + 1− j

n + 1

)]}
, (4)

where the empirical cdf, F̂ , is given by (1).

2.3. The conditional probability integral transform
There are several probability integral transformations, see e.g. D’Agostino and Stephens (1986) for a
discussion. We will consider the transformation proposed by Rosenblatt (1952). This transformation was
denoted the conditional probability integral transform (cpit) by D’Agostino and Stephens (1986) and
it transforms a set of dependent variables into a new set of independent U(0, 1) variables, given their
multivariate distribution. The cpit is a universally applicable way of creating a set of iid U(0, 1) variables
from any data set with known distribution. Given a test for multivariate, independent uniformity, this
transformation can be used to test the fit of any assumed model.

Definition 1 (CONDITIONAL PROBABILITY INTEGRAL TRANSFORM).
Let Z = (Z1, . . . , Zd) denote a random vector with marginal distributions Fi(zi) = P (Zi ≤ zi) and
conditional distributions Fi|1...i−1(Zi ≤ zi|Z1 = z1, . . . , Zi−1 = zi−1) for i = 1, . . . , d. The cpit of Z is
defined as T (Z) = (T1(Z1), . . . , Td(Zd)) where

T1(Z1) = P (Z1 ≤ z1) = F1(z1),
T2(Z2) = P (Z2 ≤ z2|X1 = z1) = F2|1(z2|z1),

...
Td(Zd) = P (Zd ≤ xd|Z1 = z1, . . . , Zd−1 = zd−1) = Fd|1...d−1(zd|z1, . . . , zd−1).

The random variables Vi = Ti(Zi), i = 1, . . . , d are uniformly and independently distributed on [0, 1]d.

A recent application of the cpit is to multivariate gof tests. A cpit is applied to a data set, assuming a
multivariate null distribution, and then a test of multivariate independence is carried out on the resulting,
transformed data set. The null hypothesis in our setting is a parametric copula family. The parameters
of this copula family needs to be estimated before applying the cpit. We shortly present parameter
estimation in Section 2.4.

An advantage with the cpit in a gof setting is that the null- and alternative hypotheses are the same,
regardless of the distribution before the cpit. The cpit also enables weighting in a simple way since the
data, after the cpit, is i.i.d. U(0, 1) under the null hypothesis. Hong and Li (2002) report Monte Carlo
evidence of multivariate tests using cpit variables outperforming tests using the original random variables.
Chen et al. (2004) believe that a similar conclusion also applies to gof tests for copulae.

A disadvantage with the cpit is the invariance with respect to the permutation of the variables since
there are d! possible permutations. However, as long as the permutation is decided randomly, the results
will not be influenced in any particular direction. D’Agostino and Stephens (1986) discuss this issue and
propose solutions for some special cases, e.g. the cpit based on ordered variables, which does not suffer
from permutation invariance. We will consider this in more detail when presenting our cpit2-approach in
Section 3.2.

2.4. Parameter estimation
There are two main ways of estimating the parameters of a copula, the fully parametric method or a
semi-parametric method. The fully parametric method, termed the inference functions for margins (IFM)
method (Joe, 1997), relies on the assumption of parametric, univariate margins. First, the parameters
of the margins are estimated and then each parametric margin is plugged into the copula likelihood
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which is then maximized with respect to the copula parameters. Since we treat the margins as nuisance
parameters, we rather proceed with the pseudo-vector Z and the semi-parametric method. This method is
denoted the pseudo-likelihood (Demarta and McNeil, 2005) or the canonical maximum likelihood (CML)
(Romano, 2002) method and is described in Genest et al. (1995) and in Shih and Louis (1995) in the
presence of censorship. Having obtained the pseudo-vector Z, using (2), the copula parameters can be
estimated using either maximum likelihood (ML) or using the well-known relations to Kendall’s tau (for
a survey of copulae and their relationship with measures of association, see Nelsen (1999)).

For the elliptical copulae in higher dimensions, we pairwise invert the sample Kendall’s tau. This
gives the correlation- and scale matrix for the Gaussian and Student’s t copulae, respectively. For the
Student’s t copula we also need to estimate the degrees of freedom. Genest et al. (2007) estimate the
scale matrix by inversion of Kendall’s tau but assume the degrees of freedom to be known/fixed. We
rather follow the approach used by Mashal and Zeevi (2002) and Demarta and McNeil (2005). This is a
two-stage approach in which the scale matrix is first estimated by inversion of Kendall’s tau, and then the
pseudo-likelihood function is maximized with respect to the degrees of freedom, given the estimate of the
scale matrix. For the Archimedean copulae, we consider the so-called exchangeable construction with one
dependency parameter. We estimate this parameter by numerically maximizing the pseudo-likelihood.

3. Copula goodness-of-fit testing

For univariate distributions, the gof assessment can be performed by e.g. the well-known Anderson-
Darling (Anderson and Darling, 1954) test, or less quantitatively using a QQ-plot. In the multivariate
domain there are fewer alternatives. Economic theory sheds little light on the dependence structure
between financial assets, and multivariate normality is often assumed a priori. Evidence shows, however,
that more appropriate dependence structures are available (Chen et al., 2004; Dobrić and Schmid, 2005).

Several approaches (e.g. Breymann et al. (2003); Genest et al. (2006)) project the multivariate problem
to a univariate problem applying some dimension reduction technique and then compute a univariate
test statistic. This leads to numerically efficient algorithms even for problems of high dimension. Any
univariate statistic may be used, e.g. Kolmogorov-Smirnov, Anderson-Darling, Cramér-von Mises or
kernel smoothing based L2 statistics. For a thorough treatment of these and other statistics we refer to
D’Agostino and Stephens (1986). In this paper we focus on the Anderson-Darling (AD) statistic.

For copula gof testing we are interested in the fit of the copula alone, hence the margins are commonly
treated as nuisance parameters. I.e. we use empirical margins (or equivalently, normalized ranks). The
use of empirical margins will alter the asymptotics of any test statistic. In addition, since we are testing a
hypothesized, parametric, copula, parameter estimation error will influence the asymptotics. Breymann
et al. (2003) fail to recognize these issues. They assume that the limiting distribution of their statistic is
the same whether the margins and parameters are estimated or not. As a result, the p-values that they
report are not correct. This erroneous assumption is pointed out by Genest and Rémillard (2005). It is
also thoroughly investigated by Dobrić and Schmid (2007) who modify the test procedure by Breymann
et al. (2003) such that the p-value estimates become reliable. Henceforth, when referring to the approach
by Breymann et al. (2003), the cpit-approach, we mean the approach proposed by Breymann et al. (2003)
but using the test procedure of Dobrić and Schmid (2007).

3.1. The cpit-approach
The approach proposed by Breymann et al. (2003) coincides with the approach proposed by Malevergne
and Sornette (2003) when the latter is based on cpit data. It also coincides with the second approach in
Chen et al. (2004). It is a dimension reduction approach and we will denote the test observator by G.

The testing is based on the pseudo-vector Z, see (2). A cpit is applied to Z, assuming a null hypothesis
copula Cθ. The d-variate vector V = (V1, . . . , Vd), resulting from the cpit, is i.i.d. U(0, 1)d under the
null hypothesis. Due to parameter- and margin estimation errors, this is only close to, but not exactly
true. We will consider this issue in Section 3.3. Until then we assume that this holds. The dimension
reduction is now performed as

WG =
d∑

i=1

Φ−1(Vi)2. (5)

The variable WG should, under the null hypothesis, be χ2
d distributed. The test observator G can now

be defined.
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Figure 1. Three U(0, 1)2 data sets, one that is independent (left panel) and two that are clearly dependent (center-
and right panels). bG(w) is equivalent for all three.

Definition 2 (Cpit test observator G).
Let WG be defined by (5) and Fχ2

d
(·) be the χ2

d cdf. G(w) is then defined as the cdf of Fχ2
d
(WG):

G(w) = P [Fχ2
d
(WG) ≤ w]. (6)

Under H0, all Vi are i.i.d. U(0, 1), hence G(w) = w and the density of G(w) is g(w) = 1.

Suppose we have n samples of V, vj = (vj1, . . . , vjd), j = 1, . . . , n. After performing the dimension
reduction in (5), we have n samples of WG. The empirical version of the approach then becomes

Ĝ(w) =
1

n + 1

n∑

j=1

I{Fχ2
d
(WG,j) ≤ w}, w =

1
n + 1

, . . . ,
n

n + 1
. (7)

In the cpit-approach Ĝ(w) is plugged in for F̂ (w) in the expression for the AD statistic (4).
The cpit-approach is computationally very efficient and conceptually simple. However, it has its

weaknesses. First of all, the dimension reduction, through the use of Φ−1(·)2, strongly weights data along
the boundaries of the d-dimensional unit hypercube. This may be appropriate when the sample size is
large. However, for small sample sizes, this weighting makes the approach less robust and less powerful
since there will be few observations in the boundary regions. We will see the effects of this in Section 4.
In addition, some deviations from the null hypothesis may be overlooked by the cpit-approach. Figure 1
shows three constructed bivariate data sets, one that is independent in the left panel and two that are
clearly dependent in the center- and right panels. Recall the null hypothesis of independence. We thus
wish for the lack of independence in these panels to be detected. However, G(w) will be exactly the same
for all three data sets. The explanation is that a value of 0.2 and a value of 0.8 will both contribute with
the exact same value to WG, since Φ−1(0.2)2 = Φ−1(0.8)2. Hence, we suspect the approach to perform
poor in cases where the cpit data set is radially asymmetric.

3.2. The cpit2-approach: a generalization and extension
With the weaknesses of the cpit-approach in mind, we propose a new approach, denoted the cpit2-
approach. This approach generalizes and extends the cpit-approach. First, any weight function can be
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employed in the dimension reduction (5). In addition, through the use of an additional cpit, based on
order statistics, we are able to detect radial asymmetry in the cpit data as illustrated in Figure 1.

We interpret the problem of multivariate gof testing as follows. To perform a gof assessment of a
multivariate data set we can essentially perform two univariate gof tests. First, we test the fit in the
d-space, e.g. through some dimension reduction technique such as (5). The result of this first, univariate,
gof test is n values of a test statistic. If we know the distribution of these n samples, under the null
hypothesis, we can perform another, univariate, gof test in the n-space. This will give us the desired
test statistic for the multivariate problem. In what follows we are mainly concerned with the first gof
test, in the d-space. For the second, in the n-space, we use the Anderson-Darling statistic, as in the
cpit-approach.

We first perform the cpit on the original copula data set Z. The resulting data V should be i.i.d.
U(0, 1)d under the null hypothesis. We now propose to test whether this is true, i.e. an additional test
in the d-space, testing for independent uniformity of V. This problem is well known and is discussed in
great detail in D’Agostino and Stephens (1986). They suggest a cpit, based on ordered variables, that
will be permutation invariant. Thus, we perform a regular cpit first, on Z, and then a second cpit on V
which is based on the order statistics of V.

As before, let V = (V1, . . . , Vd) be the i.i.d. U(0, 1)d random vector, obtained from applying the cpit
to Z. For d = 1, 2, . . . , we denote the order statistics of V1, . . . , Vd by

V(1) ≤ V(2) ≤ · · · ≤ V(d−1) ≤ V(d). (8)

If V(1), . . . , V(d) are the order statistics of a sample from a U(0, 1) parent distribution, then V(i) is a beta
distributed variable with parameters (i, d− (i− 1)) (D’Agostino and Stephens, 1986, ch. 8). To compute
the expressions for the order statistic cpit, we resort to David (1981, Theorem 2.7) who shows the Markov
nature of the order statistics. Using Deheuvels (1984, Theorem 1) and the fact that V is an i.i.d. U(0, 1)d

random vector under the null hypothesis, we obtain the following expression for the order statistic cpit
of V :

Hi = FV(i)|V(i−1)
(v(i)) = 1−

(
1− v(i)

1− v(i−1)

)d−(i−1)

, i = 1, . . . , d, v(0) = 0. (9)

Intuitively, poor fit in the d-space is indicated by extreme values of H. Any H too low or too high can
indicate a poor fit (Glen et al., 2001). We can now conduct the dimension reduction based on V and H:

WB =
d∑

i=1

ΓV (V(i);α) · ΓH(Hi; α), (10)

where ΓV and ΓH are weight functions used for weighting the information in V and H, respectively, and
α is the set of weight parameters. Any weight function may be used, depending on the use and the region
of the copula one wishes to emphasize. Some obvious candidates for both ΓV (X; α) and ΓH(X; α) are:

(i) Φ−1(X)2,

(ii) |X − 0.5|,
(iii) (X − 0.5)α, α = (2, 4, . . .).

Consider for example the special case ΓV (X; α) = Φ−1(X)2 and ΓH(X;α) = 1. We then obtain (5), the
cpit-approach. Since both V and H are i.i.d. U(0, 1)d under the null hypothesis we have the following
result. By choosing ΓV (X;α) = 1 and ΓH(X; α) = Φ−1(X)2, WB in (10), as for (5), should follow a χ2

d

distribution under the null hypothesis. However, in general, the distribution of WB is not known and we
must turn to a double bootstrap to approximate the cdf. Suppose we have computed WB , using some
weight functions ΓV (·;α) and ΓH(·;α). Now we simply draw d i.i.d. U(0, 1) variables Ṽ , compute H̃ and
W̃B using the same weight functions as for WB . By repeating this a large number of times (10000 times
in this paper), we can approximate the cdf of WB , FB , under the null hypothesis. Again, as for WG, WB

is only close to, but not exactly distributed according to FB . This discussion is deferred to Section 3.3.
Our new test observator B can now be defined.

Definition 3 (Cpit2 test observator B).
Let WB be defined by (10) and FB(·) be the cdf of WB. B(w) is then defined as the cdf of FB(WB):

B(w) = P [FB(WB) ≤ w]. (11)
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Under H0, all Vi are i.i.d. U(0, 1), hence B(w) = w and the density of B(w), b(w) = 1.

Suppose we have n samples of V, vj = (vj1, . . . , vjd), j = 1, . . . , n. The empirical version then
becomes

B̂(w) =
1

n + 1

n∑

j=1

I{FB(WB,j) ≤ w}, w =
1

n + 1
, . . . ,

n

n + 1
, (12)

which can be plugged in for F̂ (w) in the expression for the AD statistic (4).
To summarize our cpit2-approach, we have performed two cpit’s, the first to Z and the second to

the order statistics of V. By doing this additional order statistic cpit, our dimension reduction ap-
proach becomes more robust to phenomena like the one in Figure 1. For the data sets in Figure
1 we obtain G(w) = (0.91, 0.91, 0.91) for the left-, center- and right panels, respectively, using the
AD statistic. With the cpit2-approach, using ΓV (X; α) = 1 and ΓH(X; α) = Φ−1(X)2, we obtain
B(w) = (0.36, 66.46, 111.62). We clearly see that our extension H detects the asymmetry. Figure 2
shows WB as a surface, with respect to the cpit data set V and we see that the cpit-approach heavily
emphasizes the boundaries. The use of the cpit2-approach, with weight combination (ii) still emphasizes
these regions but less extremely. We also see that the ΓH term adds weight to the diagonal as well. This
is why this extension will help detect radial asymmetry in the cpit data. Finally, the generalization adds
flexibility and robustness to small sample sizes. Both weight functions for the dimension reduction, ΓV

and ΓH , can be decided freely, depending on the specific use.

3.3. Testing Procedure
In Section 3.1 we assume that WG in (5) follow a χ2

d distribution. Similarly, in Section 3.2 we assume that
the distribution of WB in (10) can be approximated by a double bootstrap procedure. The estimation of
the margins and the parameters of the null copula, introduces dependence in the cpit data. Hence, WG is
only close to, but not exactly χ2

d distributed. Similarly, WB is only close to, but not exactly distributed
according to FB .

To cope with this issue and obtain a proper estimate of the p-value of the observed statistic, one
should perform a parametric bootstrap procedure, where both margin- and parameter estimation effects
are accounted for. We adopt the parametric bootstrap procedure used in Genest et al. (2006), the validity
of which is established in Genest and Rémillard (2005). Dobrić and Schmid (2007) propose a very similar
procedure in their modification of the original procedure used in Breymann et al. (2003). The asymptotic
validity of the bootstrap procedure, applied to our test observator, has not yet been proved. However,
our numerical results in Section 4 strongly indicates that the procedure is valid.

Suppose we have a sample x, n observations of the d-variate vector X. The testing procedure for the
cpit2-approach is then as given below. Remember that the cpit-approach is a special case, hence the same
test procedure can be applied for this approach. Note the use of empirical margins (normalized ranks)
in step (1) and (9a), the parametric bootstrap procedure in step (9) and the double bootstrap procedure
in steps (6) and (9f).

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into nor-
malized ranks according to (2).

(2) Estimate the parameters Θ of the null hypothesis copula, by a consistent estimator Θ̂ = L̂(z1, . . . , zn).

(3) Compute the cpit sample data (v1, . . . ,vn) by applying the cpit to (z1, . . . , zn) assuming the para-
metric null hypothesis copula CbΘ.

(4) Compute the cpit2 sample data (h1, . . . ,hn) by applying the cpit (9) to (v1, . . . ,vn).

(5) Compute WB according to (10), using weight functions ΓV and ΓH .

(6) If WB follows a known distribution under the null hypothesis, compute FB(WB) accordingly. If
not, approximate FB as follows. For some large integer m, repeat the following steps for every
l ∈ {1, . . . , m}:
(i) Generate a random sample (v∗1,l, . . . , v

∗
d,l) from the null hypothesis copula, namely an i.i.d.

U(0, 1)d vector.
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v1

v2

W

(a) ΓV (X; α) = Φ−1(X), ΓH(X; α) = 1.

v1

v2

W

(b) ΓV (X; α) = |X − 0.5|, ΓH(X; α) = 1.

v1

v2

W

(c) ΓV (X; α) = |X − 0.5|, ΓH(X; α) = |X − 0.5|.

Figure 2. Weight (WB) surfaces with respect to cpit data, V. Data generating process is the Gaussian copula
(ρ = 0.71, corresponding to a Kendall’s tau of 0.5) and we perform the cpit assuming the true null hypothesis of a
Gaussian copula.
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(ii) Compute (h∗1,l, . . . , h
∗
d,l) by applying the cpit (9) to (v∗1,l, . . . , v

∗
d,l).

(iii) Compute Ŵ ∗
B,l according to (10) using the same weight functions as in step (5).

(iv) Compute FB(W ) = 1
m+1

∑m
l=1 I(Ŵ ′

B,l > ŴB).

(7) Compute B̂(w) according to (12).

(8) The estimated AD statistic T̂ is obtained by plugging B̂(w) into (4).

(9) For some large integer Nb, repeat the following steps for every k ∈ {1, . . . , Nb}:
(a) Generate a random sample (x∗1,k, . . . ,x∗n,k) from the null hypothesis copula CbΘ and compute

the associated pseudo-samples (z∗1,k, . . . , z∗n,k) according to (2).

(b) Estimate the parameters Θ, of the null hypothesis copula, with Θ̂∗k = L̂(z∗1,k, . . . , z∗n,k).

(c) Compute the cpit sample data (v∗1,k, . . . ,v∗n,k) by applying the cpit to (z∗1,k, . . . , z∗n,k), assuming
the parametric null hypothesis copula CbΘ∗k .

(d) Compute the cpit2 sample data (h∗1,k, . . . ,h∗n,k) by applying the cpit (9) to (v∗1,k, . . . ,v∗n,k).

(e) Compute W ∗
B,k according to (10), using the same weight functions as in step (5).

(f) If W ∗
B,k follows a known distribution, compute FB(WB) accordingly. If not, approximate FB

as follows. For some large integer m, repeat the following steps for every l ∈ {1, . . . , m}:
(i) Generate a random sample (v∗∗1,l,k, . . . , v∗∗d,l,k) from the null copula, an i.i.d. U(0, 1)d vector.
(ii) Compute (h∗∗1,l,k, . . . , h∗∗d,l,k) by applying the cpit (9) to (v∗∗1,l,k, . . . , v∗∗d,l,k)

(iii) Compute Ŵ ∗∗
B,l,k according to (10) using the same weight functions as in step (5).

(iv) Compute FB(W ∗∗
B ) = 1

m+1

∑m
k=1 I(Ŵ ∗∗

B,l,k > Ŵ ∗
B,k).

(g) Compute B̂∗
k(w) according to (12).

(h) The estimated AD statistic T̂ ∗k is obtained by plugging B̂∗
k(w) into (4).

(10) An approximate p-value for the cpit2 test observator B is then given by

p̂ =
1

Nb + 1

Nb∑

k=1

I(T̂ ∗k > T̂ ).

Steps 6− 9 may seem abundant and arbitrary. We could have used the WB ’s directly and performed
some test of its distribution. However, the distribution of WB is usually not known and numerical- or
simulation procedures are needed to approximate FB .

4. Monte Carlo study

By performing so-called mixing tests we examine the ability of the cpit2-approach to keep nominal sizes
and detect tail heaviness and skewness properties. The tests are performed by mixing a Gaussian copula
with an alternative copula to construct a mixed copula CMix:

CMix = (1− β) · CGa + β · CAlt, β ∈ [0, 1],

where β is the mixing parameter, CGa denotes the Gaussian copula and CAlt denotes the alternative
copula. For β = 0, CMix = CGa while for β = 1, CMix = CAlt. For 0 < β < 1 we sample from the
Gaussian copula with probability (1− β) and from the alternative copula with probability β.

The alternative copulae considered in this paper are the Student’s t-, Clayton- and Gumbel copulae.
The ability to distinguish the Gaussian from the Student’s t copula indicates the power at detecting
lower and upper tail dependency, while the ability to distinguish the Gaussian from the Clayton- and
Gumbel copulae indicates the power at detecting lower and upper tail dependency, respectively. For all
copulae, the dependency parameter is set to correspond to a Kendall’s tau of 0.2, i.e. a weak level of
dependence. This should make the various copulae hard to distinguish. For the Student’s t copula, the
degree of freedom ν, is set to 4, i.e. very heavy tails. For the Gaussian copula, the upper and lower
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tail dependencies are both 0 while for the Student’s t copula the lower and upper tail dependencies, for
a Kendall’s tau of 0.2, both equal 0.17. For the Clayton copula the lower- and upper tail dependencies
equal 4 and 0, respectively. Finally, for the Gumbel copula, the lower- and upper tail dependencies equal
0 and 0.26, respectively. See Nelsen (1999) for the definition of tail dependency.

For the cpit-approach we examined all possible combinations of the weight functions ΓV (X; α) and
ΓH(X;α), listed in Section 3.2, namely Φ−1(X)2, |X − 0.5|, (X − 0.5)α, α = (2, 8, 20). Note again that
the cpit-approach is a special case of the cpit2-approach, with ΓV (X; α) = Φ−1(X)2 and ΓH(X;α) = 1.

Our null hypothesis is that the mixed copula is a Gaussian copula. T̂ and the corresponding estimate of
the p-value is computed according to the test procedure in Section 3.3, using Nb = 500 for the parametric
bootstrap and m = 10000 for the double bootstrap. The entire procedure is repeated Nmix = 2000
times in order to obtain rejection rates and corresponding power curves. The resulting rejection rates for
the best performing weight combinations (at β = 1), are given in Tables 1-3. The weight combination
corresponding to the cpit-approach is also included for comparison, although it did not perform very well
compared to other combinations.

First, we examine the effect of dimension and sample size. For all combinations of ΓV and ΓH ,
the power increases with dimension and sample size, as expected and visualized in Figure 3. We next
examine the nominal levels, i.e. the rejection rates for β = 0, and they all roughly match the prescribed
level of 5%. This indicates the validity of our bootstrap procedure. Finally, for all combinations of
d = (2, 5), n = (125, 250, 500) and CAlt =(Student’s t, Clayton, Gumbel), we examine the power. The
best combinations varies with dimension, sample size and whether we consider lower-, upper- or both
lower and upper tail dependency. All over, the combinations

(i) ΓV (X;α) = |X − 0.5|, ΓH(X; α) = 1 and

(ii) ΓV (X;α) = (X − 0.5)2, ΓH(X; α) = 1

stand out as superior. I.e. combinations where we only consider the cpit data V, however with a different
weight function than the one in the cpit-approach. When the alternative copula is the Student’s t copula,
the combinations

(iii) ΓV (X;α) = (X − 0.5)8, ΓH(X; α) = 1 and

(iv) ΓV (X;α) = (X − 0.5)8, ΓH(X; α) = |X − 0.5|
perform equally well as combinations (i) and (ii). For this case, the cpit-approach also perform quite
well. If the alternative copula is either the Clayton- or the Gumbel copula, combinations (i) and (ii) are,
by far, the best. In addition, the combinations

(v) ΓV (X;α) = 1, ΓH(X;α) = Φ−1(X)2,

(vi) ΓV (X;α) = 1, ΓH(X;α) = (X − 0.5)α, α = (2, 8, 20) and

(vii) ΓV (X;α) = |X − 0.5|, ΓH(X; α) = |X − 0.5|
perform quite well.

Consider the particular case where we have very few samples, i.e. n = 125, and high dimension, i.e.
d = 5 and the alternative copula is the Clayton copula. In this case the ΓH term adds power compared
to combinations only includingthe ΓV term. However, for large sample sizes (i) and (ii) are superior.

Figure 4 illustrates the difference in power for some combinations. We see that the cpit-approach
(ΓV (X; α) = Φ−1(X)2, ΓH(X; α) = 1) has quite low power in some cases, while the cpit2-approach with
weight combinations (i), (ii) and several other combinations perform better.

5. Application

The choice of dependency structure can have big impacts in several applications, e.g. capital allocation
and the pricing of credit derivatives, such as basket default swaps. We analyze the dependency structure
of stock portfolios by looking at their daily log-returns. The historical data consists of 1000 samples of
45 large cap stocks from the New York Stock Exchange, spanning the period from January 13th, 2003 to
December 29th, 2006.
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(a) Effect of n, the sample size. CAlt = Ct4 ,
ΓV (x) = |x− 0.5|, ΓH(x) = 1, d = 5.
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ΓV (x) = |x− 0.5|, ΓH(x) = 1, n = 500.

Figure 3. Power curves for the approach B, for varying sample sizes and dimension. On the x-axis we see the
mixing parameter β, while on the y-axis we see the portion of times the Gaussian copula (i.e. the null copula) is
rejected. 5% significance level.
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Figure 4. Power curves for the approach B, comparing various weight combinations (ΓV , ΓH ). On the x-axis we
see the mixing parameter β, while on the y-axis we see the portion of times the Gaussian copula (i.e. the null
copula) is rejected. 5% significance level.
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Table 1. Rejection rates, in percent, of the Gaussian copula under various
dimensions, sample sizes and weight combinations. The alternative hypothesis
is the Student’s t copula with 4 degrees of freedom. The dependency parameter
corresponds to a Kendall’s tau of 0.2. 5% significance level.

d n ΓV (X), ΓH(X)
β

0 0.25 0.5 0.75 1

2

125

Φ−1(X)2, 1 4.93 2.71 2.22 3.00 6.06

|X − 0.5|, 1 5.67 4.93 7.24 8.72 16.45

(X − 0.5)2, 1 5.67 4.24 6.95 9.51 16.16

(X − 0.5)8, 1 4.63 2.86 2.51 3.3 7.34

(X − 0.5)8, |X − 0.5| 5.17 3.00 1.92 2.86 6.31

250

Φ−1(X)2, 1 4.83 2.81 4.68 10.44 23.65

|X − 0.5|, 1 4.29 6.31 11.48 20 36.50

(X − 0.5)2, 1 4.88 5.52 11.38 21.77 40.44

(X − 0.5)8, 1 4.53 3.30 4.88 12.81 28.62

(X − 0.5)8, |X − 0.5| 5.02 3.10 3.84 11.97 26.11

500

Φ−1(X)2, 1 5.42 4.73 15.12 38.33 67.88

|X − 0.5|, 1 5.22 8.03 20.15 42.46 69.01

(X − 0.5)2, 1 5.12 7.93 21.72 48.92 77.00

(X − 0.5)8, 1 5.22 4.83 15.07 38.33 66.6

(X − 0.5)8, |X − 0.5| 5.57 4.24 13.84 34.19 64.19

5

125

Φ−1(X)2, 1 4.58 1.13 12.71 42.96 79.85

|X − 0.5|, 1 5.76 4.78 15.91 37.49 64.58

(X − 0.5)2, 1 5.81 5.91 22.41 52.51 81.92

(X − 0.5)8, 1 4.48 3.10 20.49 56.55 87.83

(X − 0.5)8, |X − 0.5| 4.53 1.87 14.53 45.96 82.07

250

Φ−1(X)2, 1 4.48 6.06 52.41 95.07 100.00

|X − 0.5|, 1 5.02 9.85 39.70 81.33 97.93

(X − 0.5)2, 1 4.63 13.00 56.6 93.94 99.85

(X − 0.5)8, 1 5.57 10.94 63.15 96.70 100.00

(X − 0.5)8, |X − 0.5| 4.93 8.67 53.55 93.69 99.9

500

Φ−1(X)2, 1 5.57 26.9 95.86 100.00 100.00

|X − 0.5|, 1 5.47 23.69 80.99 99.46 100.00

(X − 0.5)2, 1 5.52 32.32 93.45 100.00 100.00

(X − 0.5)8, 1 5.62 36.16 96.75 100.00 100.00

(X − 0.5)8, |X − 0.5| 4.88 29.01 94.19 100.00 100.00
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Table 2. Rejection rates, in percent, of the Gaussian copula under various dimensions, sample sizes and weight combi-
nations. The alternative hypothesis is the Clayton copula. The dependency parameter corresponds to a Kendall’s tau of
0.2. 5% significance level.

d n ΓV (X), ΓH(X)
β

0 0.25 0.5 0.75 1

2

125

|X − 0.5|, 1 5.32 4.93 4.68 4.78 6.40

(X − 0.5)2, 1 5.62 5.32 4.58 4.58 5.12

|X − 0.5|, |X − 0.5| 5.67 5.02 4.43 4.29 4.48

|X − 0.5|, (X − 0.5)2 5.32 5.22 4.98 4.38 5.12

1, |X − 0.5| 5.76 6.06 6.45 5.71 6.40

250

|X − 0.5|, 1 5.37 5.02 6.11 6.55 6.75

(X − 0.5)2, 1 5.62 4.73 5.17 5.17 5.57

|X − 0.5|, |X − 0.5| 4.48 6.06 5.27 4.63 5.32

|X − 0.5|, (X − 0.5)2 4.68 5.32 4.98 4.58 4.43

1, |X − 0.5| 5.42 6.01 5.27 6.55 7.29

500

|X − 0.5|, 1 4.04 4.53 6.16 8.03 9.61

(X − 0.5)2, 1 4.38 4.53 6.11 6.90 7.83

|X − 0.5|, |X − 0.5| 4.58 4.58 6.21 4.68 6.90

|X − 0.5|, (X − 0.5)2 4.43 4.78 5.12 5.62 5.81

1, |X − 0.5| 5.27 5.52 6.75 7.14 8.62

5

125

|X − 0.5|, 1 4.29 5.22 5.02 6.45 5.62

(X − 0.5)2, 1 5.42 4.24 3.74 4.73 4.48

|X − 0.5|, |X − 0.5| 4.78 5.91 5.37 6.21 6.70

|X − 0.5|, (X − 0.5)2 4.53 6.06 5.57 7.00 6.85

1, |X − 0.5| 5.07 5.86 5.22 5.71 5.47

250

|X − 0.5|, 1 4.33 5.37 6.11 8.18 11.63

(X − 0.5)2, 1 4.68 4.88 4.19 6.26 8.92

|X − 0.5|, |X − 0.5| 4.83 5.12 6.50 7.24 10.20

|X − 0.5|, (X − 0.5)2 4.53 5.52 6.90 7.83 11.77

1, |X − 0.5| 5.57 4.93 5.91 6.35 7.54

500

|X − 0.5|, 1 5.37 5.27 8.67 12.61 19.36

(X − 0.5)2, 1 4.93 5.12 7.04 11.58 18.77

|X − 0.5|, |X − 0.5| 5.07 6.70 7.83 11.03 16.01

|X − 0.5|, (X − 0.5)2 5.37 6.75 8.23 11.08 17.73

1, |X − 0.5| 5.42 5.57 7.04 7.29 8.62
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Table 3. Rejection rates, in percent, of the Gaussian copula under various
dimensions, sample sizes and weight combinations. The alternative hypothesis
is the Gumbel copula. The dependency parameter corresponds to a Kendall’s
tau of 0.2. 5% significance level.

d n ΓV (X), ΓH(X)
β

0 0.25 0.5 0.75 1

2

125

|X − 0.5|, 1 5.91 4.88 5.71 6.06 6.55

(X − 0.5)2, 1 6.16 4.88 5.76 5.02 5.37

1, Φ−1(X)2 5.96 5.22 4.88 4.58 4.73

1, (X − 0.5)8 5.91 5.71 4.58 4.98 5.07

250

|X − 0.5|, 1 5.07 5.27 5.91 6.75 8.37

(X − 0.5)2, 1 5.67 4.78 4.93 5.52 6.90

1, Φ−1(X)2 4.93 5.57 5.22 4.19 4.63

1, (X − 0.5)8 5.22 5.17 5.91 3.99 4.73

500

|X − 0.5|, 1 5.52 6.40 6.75 9.85 12.51

(X − 0.5)2, 1 5.27 5.22 6.75 9.06 12.32

1, Φ−1(X)2 5.32 5.12 5.07 5.22 6.11

1, (X − 0.5)8 5.22 5.12 5.17 5.42 5.67

5

125

|X − 0.5|, 1 4.68 4.09 4.29 4.14 3.94

(X − 0.5)2, 1 4.88 4.09 3.30 3.15 3.60

1, Φ−1(X)2 5.32 6.06 4.98 5.22 5.17

1, (X − 0.5)8 5.22 5.76 4.93 5.07 4.68

250

|X − 0.5|, 1 5.22 4.04 3.99 5.27 6.60

(X − 0.5)2, 1 5.07 4.04 4.29 4.88 7.00

1, Φ−1(X)2 5.71 4.63 5.47 5.42 5.52

1, (X − 0.5)8 5.32 5.37 5.76 5.71 5.47

500

|X − 0.5|, 1 4.63 4.24 4.98 8.33 12.81

(X − 0.5)2, 1 4.53 3.65 5.57 9.41 17.09

1, Φ−1(X)2 4.98 5.57 5.32 6.06 7.44

1, (X − 0.5)8 6.06 4.83 4.53 6.11 6.50
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Asset collections of dimension 2 and 5 were randomly selected 2000 times from the full data set. As
in Chen et al. (2004) and Panchenko (2005) we examine the raw returns and the GARCH(1, 1) filtered
returns, i.e. each individual assets return is filtered through a standard GARCH(1, 1) process. This
filtering is done to remove serial dependence in each individual time series. For details of GARCH
processes, see e.g. Bollerslev (1986). We fit the Gaussian-, Student’s t-, Clayton- and Gumbel copulae to
the portfolios and apply the cpit2-approach, with ΓV (X; α) = |X−0.5| and ΓH(X; α) = 1, to investigate
how often each copula is rejected.

Table 4 shows the rejection rates for the raw and filtered returns. We see that for all but the
Student’s t copula, the rejection rate is increasing with sample size. For d = 5 the rejection rates for
the Clayton- and Gumbel copulae are very high. This is not surprising since we are only considering the
so-called exchangeable Clayton- and Gumbel copulae, having only one dependency parameter. Fitting
a 5-dimensional distribution with only one parameter is usually not sufficient. The Gaussian copula is
not that easily rejected for small sample sizes in the bivariate case. However, for higher dimensions and
sample sizes, we see that the Gaussian copula is strongly rejected for both raw and filtered returns. The
Student’s t copula seems to provide a very good fit for all dimensions and sample sizes and for both raw
and filtered returns. It is not surprising that the Student’s t copula outperforms the other copulae since
it has more parameters. Nevertheless, the low rejection rates for the Student’s t copula are interesting.
Also, note the reduced rejection rates in most cases for the filtered returns. This is also expected since
serial dependence is removed.

6. Concluding remarks

We have generalized and extended the copula gof approach proposed by Breymann et al. (2003). The
main contribution is the flexibility in the dimension reduction function. The generalization enables the
user to apply any weight function combination to the cpit data sets V and H, depending on the use.
The additional cpit step, based on order statistics, should make the dimension reduction more robust to
the inconsistency issue illustrated in Figure 1. We have not been able to reconstruct the inconcistency
issue in our Monte Carlo study, except when the alternative copula is the Clayton copula, for d = 5,
n = 125 where the ΓH term seems to add power. However, the added power in this case may also be
due to the high dimension and very few samples. Neither have we found a real world data set where this
issue manifests itself. However, the danger of this issue coming into play will always be there, justifying
our extension.

Monte Carlo results show that our approach keeps the prescribed nominal level for all weight combi-
nations examined. We also see that the cpit-approach has low power in some circumstances, particularly
for low sample sizes. The reason is that the dimension reduction strongly weights the boundaries of the
d-dimensional unit hypercube. If we have few samples there are few observations in the boundary regions
and the cpit-approach becomes less robust and less powerful. An important result is the superior perfor-
mance, in all our numerical tests, of the two weight combinations (i): ΓV (X; α) = |X−0.5|, ΓH(X; α) = 1
and (ii): ΓV (X; α) = (X−0.5)2, ΓH(X;α) = 1. Hence, based on our numerical experiments, these com-
binations are recommended. For skewness properties, it may seem like the additional ΓH term has some
effect, in particular for higher dimensions and small sample sizes. With the inconsistency issue from
Figure 1 in mind, the additional use of ΓV (X; α) = |X − 0.5|, ΓH(X;α) = |X − 0.5| is recommended.

Application of the cpit2-approach to a collection of large cap stock portfolios show that the Student’s
t copula provide a fairly good fit to the data while the Gaussian copula is strongly rejected for higher
dimensions. A GARCH(1,1) filtering of the original data only marginally reduced the rejection of the
Gaussian copula. This is in accordance with the findings of Dobrić and Schmid (2005) and Chen et al.
(2004) and indicates that the Student’s t copula, in general provides a superior fit to daily log-returns
for equity prices.

Further work involve comparison of the cpit2-approach with other approaches, e.g. Panchenko (2005),
Genest and Rémillard (2005) and Genest et al. (2006). Further tests of various weight combinations and
their relative performance with respect to various degrees of dependence, dimensions, sample sizes and
null- and alternative hypotheses, is also of interest. Finally work needs to be done to better understand
how the weight combinations relate to the original data set Z, not only the cpit data set V.
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Table 4. Rejection rates, in percent, of the Gaussian-, Student’s t- and one-
parameter Clayton- and Gumbel copulae, applied to the raw and GARCH(1, 1)
filtered returns. Dimensions d = (2, 5), sample sizes n = (250, 500, 1000),
ΓV (X) = |X − 0.5| and ΓH(X) = 1. 5% significance level.

Gaussian copula

Dimension Sample size Raw returns Filtered returns

2

250 6.23 5.15

500 11.42 5.25

1000 26.18 11.67

5

250 12.75 7.35

500 16.52 12.06

1000 49.71 25.10

Student’s t copula

Dimension Sample size Raw returns Filtered returns

2

250 5.10 7.50

500 6.18 5.44

1000 6.42 3.53

5

250 7.30 5.29

500 9.80 6.37

1000 10.74 10.29

Clayton copula

Dimension Sample size Raw returns Filtered returns

2

250 7.30 7.25

500 9.85 5.64

1000 21.52 8.43

5

250 32.06 19.61

500 41.32 35.39

1000 77.84 60.44

Gumbel copula

Dimension Sample size Raw returns Filtered returns

2

250 5.88 3.09

500 5.34 7.89

1000 14.36 5.44

5

250 44.80 31.62

500 44.02 33.33

1000 75.29 50.98
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