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Introduction

1. Introduction

Dependency modelling

>

> Linear correlation coefficient - a measure of linear dependence

> In e.g. financial markets we often see non-linear dependency structures
>

Elliptical distributions - linear dependence structure - correlation coefficient
meaningful

> Non-elliptical distributions - alternative measures of dependence needed =
Copulae

> Any multivariate distribution function can serve as a copula
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Introduction

Historical background

1.1. Brief historical background:

> 1940's: Hoeffding studies properties of multivariate distributions

> 1959: The word copula appears for the first time (Sklar)

> 1999: Introduced to financial applications (Embrechts, McNeil, Straumann)
>

2006: Several insurance companies, banks and other financial institutions apply
copulae as a risk management tool
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Definitions and theorems

Attractive features

2. Definitions and Theorems

Definition (Copula)
A d-dimensional copula is a multivariate distribution, C, with standard uniform marginal
distributions.

Theorem (Sklar)

Every multivariate distribution F, with margins, F1,F», ..., F4 can be written as
F(X15---%Xd) = C(F1(X1), - s Fd(Xa)), (2.1)

for some copula C.
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Definitions and theorems

Attractive features

2. Definitions and Theorems

> Given a random vector X = (X, ..., Xq) the copula of their joint distribution
function may be extracted from equation (2.1):

C(ulv' . '7ud) = F(Ffl(ul)7 H '7Fd71(ud))7

where the Fi_l’s are the quantile functions of the margins.

> The copula is often represented by its density function c(u):

up ug
C(U)ZP(Ul§U17U2§U27~~-7UdSud):/ / c(u)du,
0 0
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Definitions and theorems

Attractive features

2. Definitions and Theorems

> For the implicit copula of an absolutely continuous joint df F with strictly
continuous marginal df's Fq, . .., Fq, the copula density is given by

c(u) = FFL M), Fy ' (ua)) .
fu(Fy H(un)) -+ fa (Fg *(un))

> Hence,

C(F104).-.- Falta)) = ot

> This means that a general d-dimensional density can be written as
f(x1,.. ., %a) = €(Fa(X1), ..., Fa(xa)) - fu(x1) - -fa (Xa)

for some copula density c(+).
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Definitions and theorems

Attractive features

2.1. Attractive features of copulae:

> A copula describes how the marginals are tied together in the joint distribution
> The joint df is decomposed into the marginal dfs and a copula

> The marginal dfs and the copula can be modelled and estimated separately,
independent of each other

> Given a copula, we can obtain many multivariate distributions by selecting
different marginal dfs

> The copula is invariant under increasing and continuous transformations
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Examples

2.2. Examples

Example 1: Independence copula
IfU~U(0,1) and V ~ U(0, 1) are independent, then

C(u,v)=uv=N=PU <u)P(V <v)=PWU <u,V <v)=H(u,v),
where H(u, v) is the distribution function of (U, V). C is called the independence
copula.

04

00 02

Figure: Simulations from the bivariate independence copula.
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Examples

2.2 Examples

Example 2: Gaussian copula (implicit)

W x2 — 2pxy +y?
cga / / - dxdy,
(1) 27r(1 p?)t/? Xp{ 2(1-p?) i

where p is the linear correlation coefficient.
Example 3: Student’s t copula (implicit)

—(v+2)/2
t X2 — 2pxy +y2

ct (u, :/ / 1 dxdy,

p(UV) = 27r(1 LR I “

where v is the degrees of freedom and p is the linear correlation coefficient.

Daniel Berg Introduction to Copulae



Examples

2.2 Examples 2-3: lllustration
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Figure: Simulations from the bivariate Gaussian- and Student’s t distribution,
and the associated copulae (p = 0.7, v = 4).
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Examples

2.2 Examples

Example 4: Clayton copula (explicit)

Cf;:'(u,v) = (u_‘s +v - 1)_1/5,
where 0 < § < oo is the parameter controlling the dependence. Perfect dependence is
obtained if § — oo, while 6 — 0 implies independence.

Figure: Simulations from the bivariate Clayton copula (§ = 3).
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Examples

2.2 Examples

Example 5: Gumbel copula (explicit)

Cgi(u,v) = exp{—[(=Inu)’ + (= Inv)°1/%},
where 1 < 6 < oo is the parameter controlling the dependence. Perfect dependence is
obtained if # — oo, while & — 1 implies independence.

Figure: Simulations from the bivariate Gumbel copula (¢ = 3).
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Dependence concepts

3. Dependence Concepts

We will consider the following dependence measures:
> Linear correlation
> Concordance

o Kendall’s tau
o Spearman’s rho

> Tail dependence
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Dependence concepts

3.1. Linear correlation

Cov(X,Y)

pIX.Y) = /Var(X)Var(Y) '

Sensitive to outliers
Measures the "average dependence" between X and Y

Invariant under strictly increasing linear transformations

v Vv Vv V

May be misleading in situations where multivariate df is not elliptical
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Dependence concepts

3.1. Linear correlation

Gaussian copula (p=0.7) Clayton copula (3=2.015)
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Figure: lllustration of the potential pitfalls of the linear correlation coefficient.
Both distributions have linear correlation coefficient equal to 0.7.
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Dependence concepts

3.2. Concordance

Let (x;, ;) and (x;,y;) be two observations from a random vector (X, Y') of continuous
random variables.

> Concordance: (x; — X;)(yi —¥j) >0
> Discordance: (x; — x;)(yi —¥;) <0

Let (X1, Y1) and (X2, Y2) be independent vectors of cont. random variables with joint
df's H; and H, and copulae C; and C,, respectively. Let Q define the difference
between the prob. of concordance and discordance of (Xy, Y1) and (Xz, Y2):

Q =P ((Xy —X2)(Y1 — Y2) > 0) = P((X1 — X2)(Y1 — Y2) < 0)

1 1
:Q(cl,cz):4/0 /0 Cy(u,v)dCy (U, V) — 1.
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Dependence concepts

3.2.1. Kendall's tau

1 1
pT(X,Y):Q(C,C):4/O /0 Cu,v)dC(u,v) — 1
— 4E(C(U,V)) - 1.

Less sensitive to outliers

Measures the "average dependence” between X and Y
Invariant under strictly increasing transformations
Depends only on the copula of (X,Y)

v v Vv VvV V

For elliptical copulae: cor(X,Y) = sin (ng)
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Dependence concepts

3.2.2. Spearmans’s rho

pS(X7Y) = 3Q(07 n)

1,1
:12/ / uvdC(u,v) — 3
o Jo

1,1
= 12/ / C(u,v)dudv — 3.
o Jo
Less sensitive to outliers

Measures the "average dependence" between X and Y
Invariant under strictly increasing transformations
Depends only on the copula of (X, Y)

ps(X,Y) = p(Fx (X), Fy (Y))

For elliptical copulae: cor(X,Y) = 2sin (% ps)
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Dependence concepts

3.3. Tail dependence
Let (X,Y) be ar.v. with marginal df's Fx and Fy. The coefficient of upper and lower
tail dependence of (X, Y) is defined as:

Au(X,Y) = lim P(Y > Fo (@)X > F (),
A(X,Y) = lim P(Y < Fy (o)X < Fi(a).

I.e. the tail dependence is the prob. of observing a large(small) Y, given that X is
large(small). If Ay > 0 (A, > 0), then we say that (X, Y) has upper (lower) tail
dependence.

> Gaussian copula: Ay = A\ = 2liMx—00 ® (x\/l —p//1+ p) =0

> Student-t copula: Ay = X\ = 2t, 41 (—\/u +1,/(1-p)/(1+ p)). Asymptotic
tail dependence, even when p = 0.

> Clayton copula: Ay =0, A\ =21/,

> Gumbel copula: A =0, Ay =2 — 21/9,
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Copula Families

4. Copula Families

We will consider the two most important families of copulae:
> Elliptical copulae
> Archimedean copulae
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Copula Families

4.1. Elliptical Copulae

> Implied by well-known multivariate df’s, derived through Sklar’s theorem
> Extends the multivariate normal Ny (p, X).

> Extend to arbitrary dimensions and are rich in parameters. A d-dim elliptical
copula has at least d(d — 1)/2 parameters

> Easy to simulate

> Drawback: Do not have closed form expressions and are restricted to have radial
symmetry

Examples: Gaussian copula, Student’s t copula
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Archimedean copulae

4.2. Archimedean Copulae

An Archimedean copula is defined as follows:

C(u,v) = ¢ (p(u) + ¢(v)).
The function ¢ is called the generator of the copula.
> Allow for a great variety of dependence structures
> Closed form expressions
> Not derived from mv df’'s using Sklar's theorem
> Drawback: Higher dimensional extensions difficult
Examples: Clayton copula, Gumbel copula
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Archimedean copulae

4.2. Archimedean Copulae

Example 1: Clayton copula
The generator function for the Clayton copula is given by ¢(t) = (t—% — 1)/5, where
4 € (0, 00). This gives the Clayton copula:

Cs(u,v) = o Hp(U) + o(v)) = (U™° v — 1)/,

The Clayton copula has lower tail dependence.

Example 2: Gumbel copula

The generator function for the Gumbel copula is given by ¢(t) = (— Int)?, where
6 > 1. This gives the Gumbel copula:

Co(u,v) = ¢~ H(o(u) + p(v)) = exp(=[(~ Inu)? + (= Inv)°]/*).

The Gumbel copula has upper tail dependence.
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Estimating copula parameters

5. Estimating Copula Parameters

Fully parametric method:

>

>

>

Denoted Inference functions for margins (IFM) method.
Assumes parametric univariate marginal distributions.

Parameters of margins are first estimated, then each parametric margin is
plugged into the copula likelihood, and this full likelihood is maximized.

Success depends upon finding appropriate parametric models for the margins,
which is not always straightforward

Semi-parametric method:

>

>

Denoted the pseudo-likelihood or canonical maximum likelihood (CML) method

No parametric assumptions for the margins, use empirical cdf’s, then plug into
likelihood
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Estimating copula parameters

5.1 Estimation - Elliptical copulae

Gaussian copula:
> Correlation matrix R (d(d — 1)/2 parameters)

> ML estimator: R = arg maxgep Zj"zl logc(Uj; R), where the pseudo samples
U; are generated using either the IFM or the CML method.

Student’s t copula:
> Correlation matrix R and degree-of-freedom v (1 + d(d — 1)/2 parameters)

> ML wrt R and v simultaneously difficult

> Simpler: two-stage approach in which R is estimated first using Kendall’s tau,
and then the pseudo-likelihood function is maximized wrt v.
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Estimating copula parameters

5.2 Estimation - Archimedean copulae

Clayton and Gumbel copulae:
> One parameter, § and 6 respectively
> Numerical optimization of likelihood
> Bivariate - utilize the following relationships to Kendall’s tau:

2p- ~
p 7

6=, :
1-pr 1-pr
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Simulating from copulae

6. Simulating from Copulae

Gaussian copula:
> Simulate X ~ N4(0,R)

> SetU = (®(Xy),...,P(Xq)) orU = (F(Xy),...,F(Xq)) where the F’s are the
quantile functions

Student’s t copula:
> Simulate X ~ t4(0,R,v)

> SetU = (t,(X1),...,t(Xq)) or U = (F(X1),...,F(Xq)) where the F’s are the
quantile functions
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Simulating from copulae

6. Simulating from Copulae

Clayton copula:
By noting that the inverse of the generator is equal to the Laplace transform of a
Gamma variate X ~ Ga(1/4, 1), the simulation algorithm becomes:

> Simulate a gamma variate X ~ Ga(1/4,1)

> Simulate d iid U(0, 1) variables Vq, ..., Vq4

> ReturnU = ((1 AT %)*1/5)
Gumbel copula:
By noting that the inverse of the generator function is equal to the Laplace transform of
a positive stable variate X ~ St(1/6,1,~,0), where v = (cos (%))9 and @ > 1, the
simulation algorithm becomes:

> Simulate a positive stable variate X ~ St(1/6,1,~,0)

> Simulate d iid U(0, 1) variables Vq,...,Vq4

1/6 1/
> Return U = (exp (_ <_|OQTV1> ),...,exp (_ (_Iongd> ))



Simulating from copulae

6. Simulating from Copulae

In general we could apply the conditional marginal cdf’s:

d1C(uy, . ~7ui)/aiilc(ulw~-7ui—l)
Ouq - - OUj_1 Ouq ---OUj_1 '

Fija,..i—a(uifug, ... ui_g) =

The simulation algorithm then becomes:
> Simulate a rv u; from U(0, 1),

> Simulate a rv up from Fy1(-|uy),

> Simulate arv ug from Fqjq . g—1(-[ug,...;Ug_1)

> Generally means simulating a rv V; from U(0, 1) from which
uj = Fi“llm i_1(Vilug, ..., uj_1) can be obtained, if necessary by numerical root

finding.
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Higher Dimensional Copulae

7. Higher Dimensional Copulae

I. Copulae with at least d(d — 1)/2 bivariate dependence parameters:
> Build multivariate copulae from bivariate copula
> Based on iteratively mixing conditional copulae
> Very flexible tool for dependency modelling
> Does not require any assumption of conditional independence
> Also referred to as 'Vines’ (Cooke and Bedford, 2002)
> Drawback: difficult, slow, depends heavily on permutation
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Higher Dimensional Copulae

7. Higher Dimensional Copulae

I. Copulae with at least d(d — 1)/2 bivariate dependence parameters:

12 23 34

Example:
C1234(U1, Uz, Ug, Ug) = C12(U1, Uz) - C23(U2, Ug) - C34(Us3, Us)
- C13)2(Fyj2(uz]uz), F3j2(us|uz)) - Coa13(F23(uz2|us), Faj3(uslus))
- C14)23(F1j23(U1|uz, Us), Faj23(ugluz, us)),

_ oy lcuy,..u) /9 TiC(uL, Ui g)
where Fl\l...lfl(ul [Ug,...,Ui_1) = Bl -—-0U; 1 duy--0u 1
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Higher Dimensional Copulae

7. Higher Dimensional Copulae
Il. Archimedean copulae with d — 1 bivariate dependence parameters:
> Build multivariate copulae from bivariate copula
> Based on iteratively mixing conditional copulae
> Less flexible but more intuitive and faster than 'vines’
> Only applicable to Archimedean copulae with strict generator functions

C3(ug, up,uz) = ¢ Hp(u1) + @(Uz) + ¢(ug)]

= M e(e He(ur) + (u2)]) + ¢(u3)]
= C?(C?(uy,up), ug),
= CY%uy,...,ug) = C3(C¥ (ug,...,ug_1),uq).
Example:

C3(ug, Uz, Ug) = ¢, w2 0 07 Mipr(U) + p1(U2)] + w2 (us)].
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Application

8. Application

Using some simplifying assumptions we simulated losses for a portfolio of 30 American
firms, assuming Gaussian, Student’s t and Vine (Student's t C-vine) dependency
structures.

0.12

Gaussian
Student-t
Vine

0.08

Standardized Loss
0.04

0.00

095 056 057 058 059 100
Quantile

Figure: Value-at-risk for a portfolio of 30 american firms, assuming Gaussian,
Student’s t and Vine dependency structure.
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Copula goodness-of-fit tests

9. Copula Goodness-of-fit Testing

> Special case of testing for multivariate density models

> Complicated due to the unspecified marginal df's. Asymptotic distributional
properties becomes very difficult to derive = p-values obtained through
simulation.

> x2- and other tests based on binning the probability space will not be feasible in
higher dimensions as the need for data would be too great.

> Some tests focus on multivariate smoothing procedures. These are
computationally very demanding in high dimensions.

> A more promising class of tests project the multivariate problem to a univariate
problem, then apply a univariate GOF statistic, e.g. Anderson-Darling (AD).

> We may base the testing on the probability integral transform (PIT).
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Copula goodness-of-fit tests

9.1 Probability Integral Transform (PIT)

> The PIT transforms a set of dependent variables into a new set of independent
U(0, 1) variables, given the multivariate distribution.

> A universally applicable way of creating a set of iid U(0, 1) variables from any
data set with known distribution

> First introduced by Rosenblatt (1952)
> Inverse of simulation

> GOF: the observed copula is PIT assuming a H, copula. Then a test of
independence is performed.
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Copula goodness-of-fit tests

9.1 Probability Integral Transform (PIT)
DEFINITION: Probability Integral Transform
Let X = (Xg,...,Xq) denote a random vector with marginal distributions
Fi(x)) = P(X; < x;) and conditional distributions F (X; < xj|X1 = Xg,...,Xi_1 = Xj_1)
fori =1,...,d. The PIT of X is defined as T(X) = (T1(X1), ..., Tq(Xq)) where T;(X;)
is defined as follows:

T1(X1) = P(X1 < x1) = Fx1(X1),
T2(X2) = P(X2 < %2|X1 = X1) = Fxa)x, (X2X1),

Ta(Xg) =P(Xg <Xg|X1 =Xq,- -, Xd—1 = Xd—1) = Fxyxg..xq_ (Xd X5 - s Xa—1)-

The random variables Z; = T;(X;), fori = 1,...,d are uniformly and independently
distributed on [0,1]9. F(x{|X1,- - -, Xi_1) is found by

d1C(uy, .. u) /9 TIC(Ug, ., Uisg)
8u1-~-8ui,1 8U1~~~8Ui,1 '
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Copula goodness-of-fit tests

9.2 Proposed tests

G: Breymann et al. (2003)

d
YjG = Z¢7l(zji)27 j=1,....n
i=1

Gw) =P (Fxg(YG < w)), w e [0,1].

> Coincides with the tests proposed by Malevergne and Sornette (2003) when the
latter is based on PIT. Also coincides with the test proposed by Chen et al. (2004).

v

Very fast
> Tail weight
> NOT consistent
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Copula goodness-of-fit tests

9.2 Proposed tests

B: Berg and Bakken (2005)

) N 1-7 40D
zi =P(r <Zjlry, ... fimg) = (11— 1or, ,

d
YE =2 (gie) o7 ()P i=1,.m,
i=1

where ~(-) is a weight function and o are weight parameters. Then

B(w) =P(Fg(YB) <w), welo1].

> Similar to G-test but based on transformed data Z *.
> Fast

> Any weight

> Consistent
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Copula goodness-of-fit tests

9.2 Proposed tests
Q: Panchenko (2005)

Q = (f1 — fa|kglfy — f2) = Q11 — 2Q12 + Qa22,

R 1 n n X J
Qo= 5 > > ra(X{ %),

k=1jp=1
where
g (x1,X2) = exp { [} — x2|2/(2dn?)}
> Based on positive bilinear forms
> Very slow
> No weight
> Consistent
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Copula goodness-of-fit tests

9.2 Proposed tests

K: Genest et al. (2006)
K(w) =P(C(Z) <w), w e]0,1],

. 1 & a 1 n
K(w) = I {C(zj) <w w = .
(W) n+1j121((1), ) W=

Based on the empirical copula and Kendall's process
Slow
Left tail weight

v Vv Vv V

Consistent
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Copula goodness-of-fit tests

9.3 Mixing results

> Mix a Gaussian copula with an alternative copula to construct a mixed copula
CM* = (1-pB)-C%+3-CcA", Bel0,1]

> CAt: Student's t (CSt, v = 4), Clayton(C®', § = 1.0) and survival
Clayton(cs®, ¢ = 1.0)

> Hop: cea

> Simulate from €2 and CA' and mix. Then PIT C™* under H,. Finally compute
test statistic and corresponding p-value

> Repeat 500 times to obtain rejection rates

> Consider G, Q, K and B test. For the B-test we consider no weight and power tail
weighting: v(Zi; o) = (Zi — 3)*, o =[4,10].
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c® d=2, n=500, v=4

o
S
—-— G

| |2 Q

S +- K
o) »- B
5«27 B(a=4)
c© B(a=10) o+
2
3
3
4

N

o

o

[}
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c® d=2, n=2500, v=4

3 s
—— G /¢ L ESTT=
© “A4-Q »/‘
=} +- K I
Q - B /
< B(o=4 a
D:g BEQ=12)) A o .
c - -
2 - o
@ - T
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o | ==
d T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Daniel Berg Introduction to Copulae



Copula goodness-of-fit tests

9.3 Mixing results

cM=c® d=5, n=500, v=4
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c® d=5, n=2500, v=4

Rejection Rate
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c® d=10, n=2500, v=4
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c®, d=2, n=500, &=1
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c®, d=2, n=2500, 5=1
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c®, d=5, n=500, 5=1
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c®, d=5, n=2500, 5=1
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Copula goodness-of-fit tests

9.3 Mixing results

cM=c®, d=10, n=2500, 5=1
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Copula goodness-of-fit tests

9.3 Mixing results
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Copula goodness-of-fit tests

9.3 Mixing results

Rejection Rate
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Copula goodness-of-fit tests

9.3 Mixing results

cM=cs®, d=5, n=500, =1
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Copula goodness-of-fit tests

9.3 Mixing results

cA=csC, d=5, n=2500, 5=1

1.0

0.8

Rejection Rate
0.4

0.2

0.0

Daniel Berg Introduction to Copulae



Copula goodness-of-fit tests

9.3 Mixing results

cM=cs, d=10, n=2500, 5=1
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Summary

10. Summary

> Linear correlation coefficient not sufficient outside the world of elliptical
distributions = alternative dependence measures

> Copula families: Elliptical, Archimedean
> Estimation and simulation

> Complex multivariate highly dependent models can be built, based on bivariate
copulae

> Significant impacts, i.e. on portfolio VaR
> Goodness-of-fit:

o Bivariate: several candidates
o Dimension > 2: B-test

Daniel Berg Introduction to Copulae
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