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Introduction
Brief historical background

. 1940: Hoeffding studies properties of multivariate distributions

. 1959: The word copula appears for the first time (Sklar, 1959)

. 1999: Introduced to financial applications (Embrechts et al., 1999)

. 2008: Widely used in insurance, finance, energy, hydrology, survival analysis, etc.

Figure: Based on a survey by Bourdeau-Brien (2007).

Daniel Berg Usage and selecting among copulae



6/27

Introduction
Parameter estimation

Model selection
Model evaluation

Summary & Conclusion

Introduction
Definition & Theorem

Definition (Copula)
A d-dimensional copula is a multivariate distribution function C with standard uniform
marginal distributions.

Theorem (Sklar, 1959)
Let H be a joint distribution function with margins F1, . . . ,Fd . Then there exists a
copula C : [0, 1]d → [0, 1] such that

H(x1, . . . , xd ) = C(F1(x1), . . . ,Fd (xd )).
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Introduction
Useful results

. A general d-dimensional density h can be expressed, for some copula density c,
as

h(x1, . . . , xd ) = c{F1(x1), . . . ,Fd (xd )}f1(x1) · · · fd (xd ).

. Non-parametric estimate for Fi (xi ) commonly used to transform original
margins into standard uniform:

uji = F̂i (xji ) =
Rji

n + 1
,

where Rji is the rank of xji amongst x1i , . . . , xni .

. uji commonly referred to as pseudo-observations and models based on
non-parametric margins and parametric copulas are referred to as
semi-parametric copulas
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Introduction
Attractive features

. The copula contains all the information about the dependence between random
variables

. Copulas provide an alternative and often more useful representation of
multivariate distribution functions compared to traditional approaches such as
multivariate normality

. Most traditional representations of dependence are based on the linear
correlation coefficient - restricted to multivariate elliptical distributions. Copula
representations of dependence are free of such limitations.

. Copulas enable us to model marginal distributions and the dependence structure
separately

. Copulas provide greater modeling flexibility, given a copula we can obtain many
multivariate distributions by selecting different margins

. Any multivariate distribution can serve as a copula

. A copula is invariant under strictly increasing transformations

. Most traditional measures of dependence are measures of pairwise dependence.
Copulas measure the dependence between all d random variables
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Parameter estimation

Model: Cθ(u1, . . . , ud ), θ ∈ Θ, dim(θ) ≥ 1
Data: x j = (xj1, . . . , xjd ), j = 1, . . . , n

Frequentist

. Method-of-moments

. Maximum likelihood

. Other methods: minimum distance, kernel smoothing, ...

Bayesian

. Posterior density
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Parameter estimation
Method-of-moments (F)

. Moment m related to θ by one-to-one function gm: m = gm(θ; C)

. If m̂ is a consistent estimator for m then θ̂ = g−1m (m̂; C) is a consistent
estimator for θ

. In most cases of interest, as n→∞ :

√
n(θ̂ − θ) ∼ N (0, σ2(Cθ))

. Examples: Spearman’s rho, Kendall’s tau

θ̂ρS = g−1ρS (ρ̂S ; C), θ̂τ = g−1τ (τ̂ ; C)

ρS (X ,Y ) = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3

τ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1
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Parameter estimation
Maximum likelihood (F)

. In classical statistics, ML estimation is usually more efficient than
method-of-moments

. Adaptation needed since inference is based on ranks ⇒ maximum
pseudo-likelihood (Oakes, 1994; Genest et al., 1995; Shih and Louis, 1995)

. Maximize rank based log-likelihood

θ̂ = argmax
θ

 1
n

n∑
j=1

log cθ
{

F̂1(xj1), . . . , F̂d (xjd )
}

. Requires density cθ and usually numerical maximization

. Particularly useful for multidimensional θ

. Genest et al. (1995) show consistency and that as n→∞:
√

n(θ̂ − θ) ∼ N (0, σ2(Cθ))

. Inefficient in general (Genest and Werker, 2002), efficient at independence
(Genest et al., 1995) and semi-parametrically efficient for the Gaussian copula
(Klaassen and Wellner, 1997).
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Parameter estimation
Other methods (F)

. Minimum distance method:
Introduced by Wolfowitz (1953) - minimize distance between empirical
distribution and family of distributions for model under consideration.

. Example:
θ̂ is the parameter that minimizes some distance between Ĉ and C

θ̂

θ̂ = argmin
θ

[
1
n

n∑
i=1

(
Ŵi −W

θ̂,i

)2]
Ŵi = Ĉ(ui1, . . . , uid ), W

θ̂,i = C
θ̂

(ui1, . . . , uid ), uji = F̂i (xji )

. Kernel smoothing method:
Derive smooth estimate of copula or its density without assuming a parametric
form. Computationally expensive. See e.g. Gijbels and Mielniczuk (1990);
Fermanian and Scaillet (2003).
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Parameter estimation
Posterior density (B)

. While frequentist methods assume there is no prior knowledge about the
parameter, Bayesian parameter estimation incorporates prior knowledge.

. Output is the entire probability density of the parameter and not only a point
estimate

P{θ|x} =
L{x |θ} · π{θ}∫

Θ L{x |θ} · π{θ} dθ

. P{θ|x} is the posterior density of θ given the data x while L{x |θ} is the
likelihood and π{θ} is the prior density of θ.
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Parameter estimation
Posterior density (B)

. Applied to copulas:

P{θ|x} ∝ L{x |θ} · π{θ}

L{x |θ} =
n∏

j=1

cθ
{
F1(xj1|θ), . . . ,Fd (xjd |θ)|θ

}
·

d∏
i=1

fi (xji |θ)


. Pseudo-observations ⇒ posterior pseudo-density?

P{θ|u} ∝ L{u|θ} · π(θ)

L{u|θ} =
n∏

j=1

cθ
{

F̂1(xj1), . . . , F̂d (xjd )|θ
}
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Model selection

Models: Ck,θk (u1, . . . , ud ), k = 1, . . . ,K , θk ∈ Θk , dim(θk) ≥ 1
Data: x j = (xj1, . . . , xjd ), j = 1, . . . , n

Frequentist

. Akaike information criterion

. Pseudo-likelihood ratio tests

Bayesian

. Bayes factor

. Other methods: Deviance information criterion, Bayesian model averaging, ...
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Model selection
Akaike information criterion (F)

AIC(Ck,θk ) = −2
n∑

j=1

log ck,θ̂k

{
F̂1(xj1), . . . , F̂d (xjd )

}
+ 2pk , pk = dim(θk)

. Choose model with smallest AIC value

. Kullback-Leibler (KL) distance: Measure of closeness from true density c0(·) to
parametric density cθ(·)

. ML estimator θ̂ tends a.s. to the minimizer θ0 of the KL distance from true
model to approximate, parametric model

. AIC searches for model with smallest estimated KL distance

. AIC assumes true model is in class of considered models. If comparing
non-nested models then pk is no longer dim(θk) and the formula above becomes
inaccurate.

. Takeuchi information criterion (TIC) is a robustified version of AIC that deals
with this issue.

. Suffers from working with pseudo-observations? Practical consequences?
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Model selection
Pseudo-likelihood ratio tests (F)

. Take into account randomness of the AIC ; ensures that no model under
consideration performs significantly better than selected model

. Does not require the considered models to include the true model. Hence allows
for the comparison of non-nested models

. Compares each model to a benchmark model and chooses the model that is
closest to the true model in terms of the KL distance

T̂kb = max
1≤k≤K ;k 6=b

[√
n
σ̂kk

{
L̂R

θ̂k ,θ̂b

(
F̂1, . . . , F̂d

)
+

pb − pk

n

}
G(σ̂kk), 0

]

L̂R
θ̂k ,θ̂b

(
F̂1, . . . , F̂d

)
=

1
n

n∑
j=1

log

 ck,θ̂k

{
F̂1(xj1), . . . , F̂d (xjd )

}
cb,θ̂b

{
F̂1(xj1), . . . , F̂d (xjd )

}


. Chen and Fan (2005) bootstrap to obtain p-value estimate for hypothesis that
none of considered models are significantly better than benchmark model b. If
hypothesis is not rejected then choose benchmark model.

. Results show consistency with AIC
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Model selection
Bayes factor (B)

. Idea: Compute posterior probability of copula model

P{Ck,θk |x} ∝ L{x |Ck,θk } · π{Ck,θk }

= π{Ck,θk } ·
∫

Θk

Lk{x |θk} · π{θk}dθk

. P{Ck,θk |x} is the posterior density of model k, Lk{x |θk} is the likelihood under
copula model k, π{Ck,θk } the prior on the copula model and π{θk} the prior of
θk .

. Bayes factor:

Bkm =
P{Ck,θk |x}/π{Ck,θk }

P{Cm,θm |x}/π{Cm,θm}
=

∫
Θk

Lk{x |θk} · π{θk}dθk∫
Θm

Lm{x |θm} · π{θm}dθm
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Model selection
Bayes factor (B)

. Does not require preliminary estimation of θk

. Bayesian analogue of likelihood ratio test

. Prior and posterior information are combined in a ratio that provides evidence in
favour of one model versus another

. Nested models not required

. Compared models should have the same dependent variable

. Huard et al. (2006) apply this methodology to copula selection. They have flat
priors for parameter and copula and simply choose the copula with the highest
posterior probability.
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Model selection
Other methods (B)

. Several alternative versions of Bayes factors (BF ) have been proposed; posterior
BF , intrinsic BF , fractional BF , ...

. Bayes information criterion (BIC): Large sample approximation of Bayes factor
assuming θ = θ̂ML. Similar to AIC , does not depend on prior, easy to compute,
etc.

. Deviance information criterion (DIC): Not an approximation of BF . Deviance
based complexity criterion used as penalty in standard information criterion.
Hierarchical modelling generalization of AIC and BIC . Particularly useful when
posterior density have been obtained by MCMC. Approximately equal to AIC for
models with little prior information.

. Bayesian model averaging - alternative to "mixed" copulas Cm = w1C1 + w2C2
estimated by EM algorithm (Hu, 2006)?

. Out-of-sample prediction accuracy
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Model evaluation

. Given our "best" model - how good is it?

. Informal graphical diagnostics

. Goodness-of-fit tests

. Other methods: cross-validation, sensitivity analysis, out-of-sample validation, ...
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Model evaluation
Informal graphical diagnostics

. Compare pseudo-observations with random sample from model

. Compare, graphically some empirical estimate of model with parametric model,
e.g. K̂ vs. K

θ̂
where K(t) = P(C(u1, . . . , ud ) ≤ t)

. Confidence/Credibility intervals
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Model evaluation
Goodness-of-fit (GoF) tests

. We wish to test the hypotheses

H0 : C ∈ F = {Cθ; θ ∈ Θ} vs. H1 : C /∈ F = {Cθ; θ ∈ Θ}

. Some proposed GoF processes:

Cn =
√

n
{

Ĉ − C
θ̂

}
Kn =

√
n
{

K̂ − K
θ̂

}
, K(t) = P(C(u) ≤ t)

Sn =
√

n
{
θ̂ρS − θ̂τ

}
. Example: Cramér-von Mises statistic for Cn:

Vn =

∫ 1

0
· · ·
∫ 1

0
{Cn(x1, . . . , xd )}2dx1 · · · dxd

. Null distribution of statistic depends on parameter - parametric bootstrap
procedure to obtain proper p-value estimate
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Model evaluation
Other methods

. Several other goodness-of-fit tests exist

. Cross-validation: systematically run through all possible splits of data and check
residuals in each case

. Sensitivity analysis: change parameter estimator, change prior, ...

. Out-of-sample validation: prediction error

Daniel Berg Usage and selecting among copulae



25/27

Introduction
Parameter estimation

Model selection
Model evaluation

Summary & Conclusion

Summary and conclusion

. Bayesian methods particularly valuable when there is no or little data OR when
we have strong prior information

. Most natural Bayesian model selection procedure is Bayes factor. Can select
model without preliminary estimation of parameter.

. Model evaluation very important to evaluate model risk and identify need for
better models

. Model selection and model evaluation are two related but different tasks

. What methods to use and in which order depends on the situation/problem
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